Mackay AM et al. (JAN 1998)
Tissue engineering 4 4 415--28
Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.
In the adult human,mesenchymal stem cells (MSCs) resident in bone marrow retain the capacity to proliferate and differentiate along multiple connective tissue lineages,including cartilage. In this study,culture-expanded human MSCs (hMSCs) of 60 human donors were induced to express the morphology and gene products of chondrocytes. Chondrogenesis was induced by culturing hMSCs in micromass pellets in the presence of a defined medium that included 100 nM dexamethasone and 10 ng/ml transforming growth factor-beta(3) (TGF-beta(3)). Within 14 days,cells secreted an extracellular matrix incorporating type II collagen,aggrecan,and anionic proteoglycans. hMSCs could be further differentiated to the hypertrophic state by the addition of 50 nM thyroxine,the withdrawal of TGF-beta(3),and the reduction of dexamethasone concentration to 1 nM. Increased understanding of the induction of chondrogenic differentiation should lead to further progress in defining the mechanisms responsible for the generation of cartilaginous tissues,their maintenance,and their regeneration.
View Publication
Kubo A et al. (APR 2004)
Development (Cambridge,England) 131 7 1651--62
Development of definitive endoderm from embryonic stem cells in culture.
The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process,we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs,either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus,we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and,as such,establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.
View Publication
We studied the immunoregulatory features of murine mesenchymal stem cells (MSCs) in vitro and in vivo. MSCs inhibited T-cell receptor (TCR)-dependent and -independent proliferation but did not induce apoptosis on T cells. Such inhibition was paired with a decreased interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha production and was partially reversed by interleukin-2 (IL-2). Thus,we used MSCs to treat myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. We injected intravenously 1 x 10(6) MSCs before disease onset (preventive protocol) and at different time points after disease occurrence (therapeutic protocol). MSC administration before disease onset strikingly ameliorated EAE. The therapeutic scheme was effective when MSCs were administered at disease onset and at the peak of disease but not after disease stabilization. Central nervous system (CNS) pathology showed decreased inflammatory infiltrates and demyelination in mice that received transplants of MSCs. T-cell response to MOG and mitogens from MSC-treated mice was inhibited and restored by IL-2 administration. Upon MSC transfection with the enhanced green fluorescent protein (eGFP),eGFP(+) cells were detected in the lymphoid organs of treated mice. These data suggest that the immunoregulatory properties of MSCs effectively interfere with the autoimmune attack in the course of EAE inducing an in vivo state of T-cell unresponsiveness occurring within secondary lymphoid organs.
View Publication
产品类型:
产品号#:
05501
05502
产品名:
Goda C et al. (FEB 2006)
International immunology 18 2 233--40
Involvement of IL-32 in activation-induced cell death in T cells.
NK cell transcript 4 (NK4),now denoted as IL-32,was originally identified as a transcript whose expression was increased in activated NK cells. It has been very recently demonstrated that NK4 is secreted from several cells upon the stimulation of some inflammatory cytokines such as IL-18,IL-1beta,IFN-gamma and IL-12. Furthermore,NK4 induces production of tumor necrosis factor,macrophage inflammatory protein (MIP)-2 and IL-8 in monocytic cell lines,indicating that this factor would be involved in the inflammatory responses. Based on these findings,NK4 was renamed IL-32. However,the biological activities of IL-32 on other cell types remained undetermined. Furthermore,it was still argued whether IL-32 acts on cells from outside or inside the cells. In this article,we first report that expression of IL-32 was up-regulated in activated T cells and NK cells,and that IL-32beta was the predominantly expressed isoform in activated T cells. IL-32 was specifically expressed in T cells undergoing apoptosis and enforced expression of IL-32-induced apoptosis,whereas its down-regulation rescued the cells from apoptosis in HeLa cells. IL-32 existing in the supernatant would be derived from the cytoplasm of apoptotic cells. These results strongly indicated that IL-32 would be involved in activation-induced cell death in T cells,probably via its intracellular actions. Our present findings expand our understanding of the biological function of IL-32 and argue that IL-32 may act on cells,not only from the outside but also from the inside.
View Publication
产品类型:
产品号#:
15021
15061
15025
15065
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Kwon C et al. (OCT 2011)
Nature cell biology 13 10 1244--51
Notch post-translationally regulates β-catenin protein in stem and progenitor cells.
Cellular decisions of self-renewal or differentiation arise from integration and reciprocal titration of numerous regulatory networks. Notch and Wnt/β-catenin signalling often intersect in stem and progenitor cells and regulate each other transcriptionally. The biological outcome of signalling through each pathway often depends on the context and timing as cells progress through stages of differentiation. Here,we show that membrane-bound Notch physically associates with unphosphorylated (active) β-catenin in stem and colon cancer cells and negatively regulates post-translational accumulation of active β-catenin protein. Notch-dependent regulation of β-catenin protein did not require ligand-dependent membrane cleavage of Notch or the glycogen synthase kinase-3β-dependent activity of the β-catenin destruction complex. It did,however,require the endocytic adaptor protein Numb and lysosomal activity. This study reveals a previously unrecognized function of Notch in negatively titrating active β-catenin protein levels in stem and progenitor cells.
View Publication
Generating human intestinal tissue from pluripotent stem cells in vitro.
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids,pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction,the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step,3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors,and they proliferate and expand over 1-3 months to give rise to intestinal tissue,complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date,this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhou T et al. (DEC 2012)
Nature protocols 7 12 2080--9
Generation of human induced pluripotent stem cells from urine samples.
Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet,acquiring donor cells is,in most instances,an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances,as the isolation of urinary cells is simple (30 ml of urine are sufficient),cost-effective and universal (can be applied to any age,gender and race). Moreover,the entire procedure is reasonably quick--around 2 weeks for the urinary cell culture and 3-4 weeks for the reprogramming--and the yield of iPSC colonies is generally high--up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential,and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases,including those affecting the kidney.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07930
07931
07940
07955
07956
07959
07954
85850
85857
85870
85875
100-1061
07952
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
CryoStor® CS10
CryoStor® CS10
Dai L et al. (FEB 2013)
The American journal of pathology 182 2 577--585
CD147-dependent heterogeneity in malignant and chemoresistant properties of cancer cells.
CD147 (alias emmprin or basigin),an integral plasma membrane glycoprotein and a member of the Ig superfamily,is widespread in normal tissues,but highly up-regulated in many types of malignant cancer cells. CD147 is multifunctional,with numerous binding partners. Recent studies suggest that complexes of CD147 with the hyaluronan receptor CD44 and associated transporters and receptor tyrosine kinases are enriched in the plasma membrane of cancer stem-like cells. Here,we show that subpopulations of tumor cell lines constitutively expressing high levels of cell-surface CD147 exhibit cancer stem-like cell properties; that is,they exhibit much greater invasiveness,anchorage-independent growth,spheroid formation,and drug resistance in vitro and higher tumorigenicity in vivo than those constitutively expressing low levels of cell-surface CD147. Primary CD147-rich cell subpopulations derived from mouse mammary adenocarcinomas also exhibit high levels of invasiveness and spheroid-forming capacity,whereas CD147-low cells do not. Moreover,localization at the plasma membrane of CD44,the EGF receptor,the ABCB1 and ABCG2 drug transporters,and the MCT4 monocarboxylate transporter is elevated in cells constitutively expressing high levels of cell-surface CD147. These results show that CD147 is associated with assembly of numerous pro-oncogenic proteins in the plasma membrane and may play a fundamental role in properties characteristic of cancer stem-like cells.
View Publication
产品类型:
产品号#:
05620
产品名:
MammoCult™人培养基试剂盒
Mossadegh-Keller N et al. (MAY 2013)
Nature 497 7448 239--43
M-CSF instructs myeloid lineage fate in single haematopoietic stem cells.
Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival,expansion and differentiation of lineage-committed progenitors,but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction,the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors,leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF,also called CSF1),a myeloid cytokine released during infection and inflammation,can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs,independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo,high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.
View Publication
产品类型:
产品号#:
72472
72474
产品名:
GW2580
GW2580
Schumann K et al. (AUG 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 33 10437--42
Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
T-cell genome engineering holds great promise for cell-based therapies for cancer,HIV,primary immune deficiencies,and autoimmune diseases,but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types
View Publication
MicroRNA Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1
MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes,as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation,a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion,we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.
View Publication