Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells
Pluripotent stem cells have the potential to become most of the cell types that make up an organism. However,the signals that trigger these cells to turn into neurons rather than lung cells or muscle cells,for example,are not fully understood. Proteins called growth factors are known to have a role in this process,as are transcription factors,but it is not clear if other factors are also involved. In an attempt to identify additional mechanisms that could contribute to the formation of neurons,Sun et al. screened more than 2,000 small molecules for their ability to transform mouse pluripotent stem cells into neurons in cell culture. Surprisingly,they found that a compound called selamectin,which is used to treat parasitic flatworm infections,also triggered stem cells to turn into neurons. Selamectin works by blocking a particular type of ion channel in flatworms,but this ion channel is not found in vertebrates,which means that selamectin must be promoting the formation of neurons in mice via a different mechanism. Given that a drug related to selamectin is known to act on a subtype of receptors for the neurotransmitter GABA,Sun et al. wondered whether these receptors—known as GABAA receptors—might also underlie the effects of selamectin. Consistent with this idea,drugs that increased GABAA activity stimulated the formation of neurons,whereas drugs that reduced GABAA function blocked the effects of selamectin. In addition,Sun et al. showed that selamectin triggers human embryonic stem cells to become neurons,and that it also promotes the formation of new neurons in developing zebrafish in vivo. As well as revealing an additional mechanism for the formation of neurons from stem cells,the screening technique introduced by Sun et al. could help to identify further pro-neuronal molecules,which could aid the treatment of neurodevelopmental and neurodegenerative disorders. DOI: [http://dx.doi.org/10.7554/eLife.00508.002][1] [1]: /lookup/doi/10.7554/eLife.00508.002
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Pei S et al. (NOV 2013)
The Journal of biological chemistry 288 47 33542--58
Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular,primitive leukemia cells,often termed leukemia stem cells,are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins,presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation,CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise,we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly,these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism,which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1),as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism,an intrinsic property of primary human AML cells.
View Publication
产品类型:
产品号#:
07930
07931
07940
07955
07956
07959
07954
100-1061
07952
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
van den Berg CW et al. ( 2016)
1353 1341 163--80
Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate to cardiomyocytes in vitro,offering unique opportunities to investigate cardiac development and disease as well as providing a platform to perform drug and toxicity tests. Initial cardiac differentiation methods were based on either inductive co-culture or aggregation as embryoid bodies,often in the presence of fetal calf serum. More recently,monolayer differentiation protocols have evolved as feasible alternatives and are often performed in completely defined culture medium and substrates. Thus,our ability to efficiently and reproducibly generate cardiomyocytes from multiple different hESC and hiPSC lines has improved significantly.We have developed a directed differentiation monolayer protocol that can be used to generate cultures comprising ˜50% cardiomyocytes,in which both the culture of the undifferentiated human pluripotent stem cells (hPSCs) and the differentiation procedure itself are defined and serum-free. The differentiation method is also effective for hPSCs maintained in other culture systems. In this chapter,we outline the differentiation protocol and describe methods to assess cardiac differentiation efficiency as well as to identify and quantify the yield of cardiomyocytes.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Paull D et al. (SEP 2015)
Nature methods 12 9 885--892
Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease,as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells,their reprogramming and the subsequent verification of iPSC pluripotency are laborious,manual processes limiting the scale and reproducibility of this technology. Here we describe a modular,robotic platform for iPSC reprogramming enabling automated,high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality,stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.
View Publication
S. K. Atkins et al. ( 2022)
Frontiers in cardiovascular medicine 9 925777
Induced pluripotent stem cell-derived smooth muscle cells to study cardiovascular calcification.
Cardiovascular calcification is the lead predictor of cardiovascular events and the top cause of morbidity and mortality worldwide. To date,only invasive surgical options are available to treat cardiovascular calcification despite the growing understanding of underlying pathological mechanisms. Key players in vascular calcification are vascular smooth muscle cells (SMCs),which transform into calcifying SMCs and secrete mineralizing extracellular vesicles that form microcalcifications,subsequently increasing plaque instability and consequential plaque rupture. There is an increasing,practical need for a large scale and inexhaustible source of functional SMCs. Here we describe an induced pluripotent stem cell (iPSC)-derived model of SMCs by differentiating iPSCs toward SMCs to study the pathogenesis of vascular calcification. Specifically,we characterize the proteome during iPSC differentiation to better understand the cellular dynamics during this process. First,we differentiated human iPSCs toward an induced-SMC (iSMC) phenotype in a 10-day protocol. The success of iSMC differentiation was demonstrated through morphological analysis,immunofluorescent staining,flow cytometry,and proteomics characterization. Proteomics was performed throughout the entire differentiation time course to provide a robust,well-defined starting and ending cell population. Proteomics data verified iPSC differentiation to iSMCs,and functional enrichment of proteins on different days showed the key pathways changing during iSMC development. Proteomics comparison with primary human SMCs showed a high correlation with iSMCs. After iSMC differentiation,we initiated calcification in the iSMCs by culturing the cells in osteogenic media for 17 days. Calcification was verified using Alizarin Red S staining and proteomics data analysis. This study presents an inexhaustible source of functional vascular SMCs and calcifying vascular SMCs to create an in vitro model of vascular calcification in osteogenic conditions,with high potential for future applications in cardiovascular calcification research.
View Publication
ROR1 CAR-T cells and ferroptosis inducers orchestrate tumor ferroptosis via PC-PUFA2
BackgroundLung cancer,particularly non-small cell lung cancer (NSCLC),has high recurrence rates and remains a leading cause of cancer-related death,despite recent advances in its treatment. Emerging therapies,such as chimeric antigen receptor (CAR)-T cell therapy,have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.MethodsRNA-seq data and immunofluorescence analysis of relapsed NSCLC patient samples were used to explore ROR1 expression. In addition,ROR1-targeting CAR-T cells were developed to assess cytotoxic activity against ROR1+ tumor cells,and the effect of cytokine stimulation on their efficacy was evaluated. Lipidomics,immunofluorescent histochemistry,and western blotting were used to explore the observed effects. Ferroptosis indicators,including levels of reactive oxygen species,were used to detect the combined effect of CAR-T cells and ferroptosis-inducing drugs. Finally,tumor-bearing mice were used to validate the in vivo efficacy of the combination therapy strategy.ResultsTumor cells treated with ferroptosis inducers showed increased sensitivity to Interferon gamma (IFN-γ) secreted by ROR1 CAR-T cells. Furthermore,ROR1 CAR-T cells enhanced the production of phosphatidylcholine with diacyl-polyunsaturated fatty acid tails (PC-PUFA2) by working in tandem with IFN-γ. This enhancement promoted the expression of acyl-CoA synthetase long chain family member 4 (ACSL4),which in turn strengthened the overall anti-tumor response.ConclusionsCombining ROR1 CAR-T cells with ferroptosis inducers enhanced anti-tumor efficacy in NSCLC by promoting ferroptosis through increased lipid peroxidation.Supplementary InformationThe online version contains supplementary material available at 10.1186/s40364-025-00730-0.
View Publication
产品类型:
产品号#:
17951
100-0695
17951RF
产品名:
EasySep™人T细胞分选试剂盒
EasySep™人T细胞分选试剂盒
RoboSep™ 人T细胞分选试剂盒
(Jul 2025)
Nature Communications 16
Antigen specificity shapes distinct aging trajectories of memory CD8⁺ T cells
Memory T cells are a highly heterogeneous collection of antigen-experienced cells that undergo dynamic adaptations upon antigen re-encounter and environmental signals. This heterogeneity hinders studies on memory T cell durability and age-related dysfunction. Using chronic Epstein-Barr virus (EBV) infection and barcode-enabled antigen tracing,we assess the influence of age on memory states at the level of single antigen-specific CD8+ T cells. In young adults (<40 years),EBV-specific CD8+ T cells recognizing different antigenic peptides assume divergent preferred differentiation phenotypes. In older adults (>65-years),antigen-specific cells show largely distinct phenotypic and transcriptomic aging trajectories. Common to many albeit not all antigen-specific populations are maintained TCR diversity,gained natural killer cell-like,innate signatures and lost stem-like features while no evidence is seen for cellular senescence or exhaustion. TCR avidity contributes to these phenotypic differences and aging-related changes. Collectively,our data uncover divergent antigen-guided aging shifts in memory T cell phenotypes,which are informative for antigen selection in optimizing vaccine design and adoptive T cell therapy. Homeostasis of memory T cells is modulated by each antigen encounter,thereby creating a heterogeneous population preventing precise tracking. Here,the authors use barcode-assisted tracing of Epstein-Barr virus-specific CD8+ memory T cells of young and older individuals to find antigen-guided,clonally divergent aging trajectories.
View Publication
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g.,T cell) immune responses,but have largely not addressed the innate immune cells (e.g.,monocytes,neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies,we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding,thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases. Graphical Abstract ICAM-1 Knock-out in Transendothelial Migration and at the Immune Synapse. Abbreviations: PSC-EC - pluripotent stem cell-derived endothelial cells; KO – knock-out; dSMAC – distal supramolecular activation complex; pSMAC – peripheral supramolecular activation complex; cSMAC – central supramolecular activation complex.
View Publication
产品类型:
产品号#:
19666
18002
18000
100-0404
产品名:
EasySep™ Direct人中性粒细胞分选试剂盒
Easy50 EasySep™磁极
EasySep™磁极
RoboSep™ 人中性粒细胞分选试剂盒
T. Hideshima et al. (apr 2020)
Leukemia
Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways.
Immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide show remarkable antitumor activity in multiple myeloma (MM) via directly inhibiting MM-cell growth in the bone marrow (BM) microenvironment and promoting immune effector cell function. They are known to bind to the ubiquitin 3 ligase CRBN complex and thereby triggering degradation of IKZF1/3. In this study,we demonstrate that IMiDs also directly bind and activate zeta-chain-associated protein kinase-70 (Zap-70) via its tyrosine residue phosphorylation in T cells. IMiDs also triggered phosphorylation of Zap-70 in natural killer (NK) cells. Importantly,increased granzyme-B (GZM-B) expression and NK-cell activity triggered by IMiDs is associated with Zap-70 activation and inhibited by Zap-70 knockdown (KD),independent of CRBN. We also demonstrate a second mechanism whereby IMiDs trigger GZM-B and NK cytotoxicity which is CRBN and IKZF3 mediated,and inhibited or enhanced by KD of CRBN or IKZF3,respectively,independent of Zap-70. Our studies therefore show that IMiDs can enhance NK and T-cell cytotoxicity in (1) ZAP-70-mediated CRBN independent,as well as (2) CRBN-mediated ZAP-70 independent mechanisms; and provide the framework for developing novel therapeutics to activate Zap-70 and thereby enhance T and NK anti-MM cytotoxicity.
View Publication