Goossens S et al. (MAY 2011)
Blood 117 21 5620--30
The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization.
Zeb2 (Sip1/Zfhx1b) is a member of the zinc-finger E-box-binding (ZEB) family of transcriptional repressors previously demonstrated to regulate epithelial-to-mesenchymal transition (EMT) processes during embryogenesis and tumor progression. We found high Zeb2 mRNA expression levels in HSCs and hematopoietic progenitor cells (HPCs),and examined Zeb2 function in hematopoiesis through a conditional deletion approach using the Tie2-Cre and Vav-iCre recombination mouse lines. Detailed cellular analysis demonstrated that Zeb2 is dispensable for hematopoietic cluster and HSC formation in the aorta-gonadomesonephros region of the embryo,but is essential for normal HSC/HPC differentiation. In addition,Zeb2-deficient HSCs/HPCs fail to properly colonize the fetal liver and/or bone marrow and show enhanced adhesive properties associated with increased β1 integrin and Cxcr4 expression. Moreover,deletion of Zeb2 resulted in embryonic (Tie2-Cre) and perinatal (Vav-icre) lethality due to severe cephalic hemorrhaging and decreased levels of angiopoietin-1 and,subsequently,improper pericyte coverage of the cephalic vasculature. These results reveal essential roles for Zeb2 in embryonic hematopoiesis and are suggestive of a role for Zeb2 in hematopoietic-related pathologies in the adult.
View Publication
Z. N. G. Galofre et al. (Feb 2024)
Nature Communications 15
Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo
Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway,suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however,their role in the hematopoietic development in vivo remains unknown. Here,we identify a subpopulation of NG2 + Runx1 + perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2 + cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs,endothelial cells and hematopoietic cells in the murine AGM. Importantly,this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental,as NG2 + Runx1 + cells were not detected in the adult bone marrow,demonstrating the existence of a specialised pericyte population in the HSC-generating niche,unique to the embryo. Subject terms: Cell biology,Haematopoiesis,Cardiovascular biology
View Publication
Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity.
Hematopoietic stem cells (HSCs) are enriched for aldehyde dehydrogenase (ALDH) activity and ALDH is a selectable marker for human HSCs. However,the function of ALDH in HSC biology is not well understood. We sought to determine the function of ALDH in regulating HSC fate. Pharmacologic inhibition of ALDH with diethylaminobenzaldehyde (DEAB) impeded the differentiation of murine CD34(-)c-kit(+)Sca-1(+)lineage(-) (34(-)KSL) HSCs in culture and facilitated a ninefold expansion of cells capable of radioprotecting lethally irradiated mice compared to input 34(-)KSL cells. Treatment of bone marrow (BM) 34(-)KSL cells with DEAB caused a fourfold increase in 4-week competitive repopulating units,verifying the amplification of short-term HSCs (ST-HSCs) in response to ALDH inhibition. Targeted siRNA of ALDH1a1 in BM HSCs caused a comparable expansion of radioprotective progenitor cells in culture compared to DEAB treatment,confirming that ALDH1a1 was the target of DEAB inhibition. The addition of all trans retinoic acid blocked DEAB-mediated expansion of ST-HSCs in culture,suggesting that ALDH1a1 regulates HSC differentiation via augmentation of retinoid signaling. Pharmacologic inhibition of ALDH has therapeutic potential as a means to amplify ST-HSCs for transplantation purposes.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Nakajima-Takagi Y et al. (JAN 2013)
Blood 121 3 447--458
Role of SOX17 in hematopoietic development from human embryonic stem cells
To search for genes that promote hematopoietic development from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs),we overexpressed several known hematopoietic regulator genes in hESC/iPSC-derived CD34(+)CD43(-) endothelial cells (ECs) enriched in hemogenic endothelium (HE). Among the genes tested,only Sox17,a gene encoding a transcription factor of the SOX family,promoted cell growth and supported expansion of CD34(+)CD43(+)CD45(-/low) cells expressing the HE marker VE-cadherin. SOX17 was expressed at high levels in CD34(+)CD43(-) ECs compared with low levels in CD34(+)CD43(+)CD45(-) pre-hematopoietic progenitor cells (pre-HPCs) and CD34(+)CD43(+)CD45(+) HPCs. Sox17-overexpressing cells formed semiadherent cell aggregates and generated few hematopoietic progenies. However,they retained hemogenic potential and gave rise to hematopoietic progenies on inactivation of Sox17. Global gene-expression analyses revealed that the CD34(+)CD43(+)CD45(-/low) cells expanded on overexpression of Sox17 are HE-like cells developmentally placed between ECs and pre-HPCs. Sox17 overexpression also reprogrammed both pre-HPCs and HPCs into HE-like cells. Genome-wide mapping of Sox17-binding sites revealed that Sox17 activates the transcription of key regulator genes for vasculogenesis,hematopoiesis,and erythrocyte differentiation directly. Depletion of SOX17 in CD34(+)CD43(-) ECs severely compromised their hemogenic activity. These findings suggest that SOX17 plays a key role in priming hemogenic potential in ECs,thereby regulating hematopoietic development from hESCs/iPSCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang et al. (Jul 2025)
Scientific Reports 15
Simvastatin inhibits the immunosuppressive effects of endometrial cancer-associated mesenchymal stem cells through TGF-β2/SMAD2/3 signaling and reduces tumor growth
Simvastatin,a 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor,was used in cardiovascular diseases and could decrease low-density lipoprotein cholesterol,and may have a repurposed role in cancer therapy. However,the effects of simvastatin on endometrial cancer remain controversial. We aimed to elucidate the role and mechanisms of simvastatin in regulating previously identified endometrial cancer-associated mesenchymal stem cells (EmCaMSCs)-mediated immunosuppressive effects and anti-tumor progression. Coculture of EmCaMSCs and peripheral blood mononuclear cells (PBMC) was used to assay the population of CD8 + T cells,natural killer (NK) cells,and cytotoxicity of NK cells. The mechanisms were elucidated by applying recombinant proteins and inhibitors of candidate proteins,transforming growth factor-beta 2 (TGF-β2). Finally,the humanized mouse model was generated to study the effects of simvastatin-mediated immunotherapy in treating endometrial cancer. The protein expressions of TGF-β2,CD56,CD8,and PD-L1 in xenograft tumors were analyzed by Western blot or immunohistochemistry assay. In this study,simvastatin inhibited the proliferation of endometrial cancer cells (HEC-1 A and RL95-2) and EmCaMSCs,and the half-maximal inhibitory concentration (IC50) values of EmCaMSCs were much higher. Simvastatin rescued the proliferation and the population of CD8 + T cells and natural killer (NK) cells from PBMC coculturing with EmCaMSC. Simvastatin treatment reduced the expression of TGF-β2 in EmCaMSCs at both the gene and protein levels. TGF-β2 activated the downstream SMAD2/3 signaling,and their inhibition by simvastatin could enhance the cytotoxicity of NK cells against endometrial cancer cells in vitro. Additionally,a combination of simvastatin and NK cell therapy inhibited xenograft growth,potentially by reducing TGF-β2 expression. In conclusion,simvastatin could rescue the population of CD8 + T cells and NK cells from PBMC cocultured with EmCaMSCs. Furthermore,simvastatin could enhance the cytotoxicity of NK cells in vitro and inhibit tumor growth in vivo in a humanized mouse model. These results suggested that simvastatin may be considered as a repurposed and combination drug for treating endometrial cancer. The online version contains supplementary material available at 10.1038/s41598-025-08686-9.
View Publication
产品类型:
产品号#:
05150
产品名:
MyeloCult™H5100
Bruserud O et al. (JUN 2005)
Journal of cancer research and clinical oncology 131 6 377--84
In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.
PURPOSE: Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells,but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. METHODS: The seven osteosarcoma cell lines Cal72,SJSA-1,Saos-2,SK-ES-1,U2OS,143.98.2,and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). RESULTS: Although proliferation often was relatively low in serum-free media (X-vivo 10,X-vivo 15,X-vivo 20,Stem Span SFEM),some cell lines (Cal72,KHOS-32IH,Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However,all cell lines proliferated well in Stem Span with FCS,and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS),and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72,SJSA-1),and the chemokine release profile was very similar to the fibroblast lines Hs27 and HFL1. CONCLUSIONS: Serum-free culture media can be used for in vitro studies of several osteosarcoma cell lines,but the optimal medium varies between cell lines and thus depends on: (i) the cell lines to be investigated/compared; (ii) the functional characteristic that is evaluated (proliferation,cytokine release); and (iii) whether coculture experiments are included.
View Publication
产品类型:
产品号#:
09600
09650
产品名:
StemSpan™ SFEM
StemSpan™ SFEM
Esteban MA et al. (JAN 2010)
Cell stem cell 6 1 71--9
Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However,the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound,vitamin C (Vc),enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence,a recently identified roadblock for reprogramming. In addition,Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72132
85850
85857
85870
85875
产品名:
抗坏血酸(Ascorbic Acid)
mTeSR™1
mTeSR™1
L. Wang et al. (nov 2019)
European journal of pharmacology 863 172676
Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation.
Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells,resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless,the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here,we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P {\textless} 0.00085),cleaved caspase (-3,-8,and -9) activity,and mitochondrial membrane potential reduction. Additionally,DAC-induced apoptosis was inhibited by Kp7-6,a FasL/Fas antagonist,indicating a crucial role of FasL/Fas,a cell death receptor,in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore,N-acetyl-L-cysteine (NAC),a widely accepted ROS scavenger,efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P {\textless} 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore,ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs,which serves as a crucial factor for mitochondrial membrane potential reduction,and DAC induces cell death prior to FasL/Fas stimulation.
View Publication
产品类型:
产品号#:
85450
85460
产品名:
SepMate™-50 (IVD)
SepMate™-50 (IVD)
Senatus PB et al. (JAN 2006)
Molecular cancer therapeutics 5 1 20--8
Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide.
We have shown that a COOH-terminal peptide of p53 (amino acids 361-382,p53p),linked to the truncated homeobox domain of Antennapedia (Ant) as a carrier for transduction,induced rapid apoptosis in human premalignant and malignant cell lines. Here,we report that human and rat glioma lines containing endogenous mutant p53 or wild-type (WT) p53 were induced into apoptosis by exposure to this peptide called p53p-Ant. The peptide was comparatively nontoxic to proliferating nonmalignant human and rat glial cell lines containing WT p53 and proliferating normal human peripheral marrow blood stem cells. Degree of sensitivity to the peptide correlated directly with the level of endogenous p53 expression and mutant p53 conformation. Apoptosis induction by p53p-Ant was quantitated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and Annexin V staining in human glioma cells in vitro and in a syngeneic orthotopic 9L glioma rat model using convection-enhanced delivery in vivo. The mechanism of cell death by this peptide was solely through the Fas extrinsic apoptotic pathway. p53p-Ant induced a 3-fold increase in extracellular membrane Fas expression in glioma cells but no significant increase in nonmalignant glial cells. These data suggest that p53 function for inducing Fas-mediated apoptosis in gliomas,which express sufficient quantities of endogenous mutant or WT p53,may be restored or activated,respectively,by a cell-permeable peptide derived from the p53 COOH-terminal regulatory domain (p53p-Ant). p53p-Ant may serve as a prototypic model for the development of new anticancer agents with unique selectivity for glioma cancer cells and it can be successfully delivered in vivo into a brain tumor by a convection-enhanced delivery system,which circumvents the blood-brain barrier.
View Publication