Miyazaki T et al. (JAN 2014)
Genesis (New York,N.Y. : 2000) 52 1 49--55
Optimization of slow cooling cryopreservation for human pluripotent stem cells
Human pluripotent stem cells (hPSCs) have the potential for unlimited expansion and differentiation into cell types of all three germ layers. Cryopreservation is a key process for successful application of hPSCs. However,the current conventional method leads to poor recovery of hPSCs after thawing. Here,we demonstrate a highly efficient recovery method for hPSC cryopreservation by slow freezing and single-cell dissociation. After confirming hPSC survivability after freeze-thawing,we found that hPSCs that were freeze-thawed as colonies showed markedly decreased survival,whereas freeze-thawed single hPSCs retained the majority of their viability. These observations indicated that hPSCs should be cryopreserved as single cells. Freeze-thawed single hPSCs efficiently adhered and survived in the absence of a ROCK inhibitor by optimization of the seeding density. The high recovery rate enabled conventional colony passaging for subculture within 3 days post-thawing. The improved method was also adapted to a xeno-free culture system. Moreover,the cell recovery postcryopreservation was highly supported by coating culture surfaces with human laminin-521 that promotes adhesion of dissociated single hPSCs. This simplified but highly efficient cryopreservation method allows easy handling of cells and bulk storage of high-quality hPSCs.
View Publication
产品类型:
产品号#:
05860
05880
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Rapti K et al. (FEB 2015)
Molecular Therapy — Methods & Clinical Development 2 May 2014 14067
Effectiveness of gene delivery systems for pluripotent and differentiated cells.
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) assert a great future for the cardiovascular diseases,both to study them and to explore therapies. However,a comprehensive assessment of the viral vectors used to modify these cells is lacking. In this study,we aimed to compare the transduction efficiency of recombinant adeno-associated vectors (AAV),adenoviruses and lentiviral vectors in hESC,hiPSC,and the derived cardiomyocytes. In undifferentiated cells,adenoviral and lentiviral vectors were superior,whereas in differentiated cells AAV surpassed at least lentiviral vectors. We also tested four AAV serotypes,1,2,6,and 9,of which 2 and 6 were superior in their transduction efficiency. Interestingly,we observed that AAVs severely diminished the viability of undifferentiated cells,an effect mediated by induction of cell cycle arrest genes and apoptosis. Furthermore,we show that the transduction efficiency of the different viral vectors correlates with the abundance of their respective receptors. Finally,adenoviral delivery of the calcium-transporting ATPase SERCA2a to hESC and hiPSC-derived cardiomyocytes successfully resulted in faster calcium reuptake. In conclusion,adenoviral vectors prove to be efficient for both differentiated and undifferentiated lines,whereas lentiviral vectors are more applicable to undifferentiated cells and AAVs to differentiated cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07174
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Bañ et al. (SEP 2008)
DNA repair 7 9 1471--1483
Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse,but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed textless10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However,the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses textless20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells,mES cells lacking H2AX,a histone protein involved in the DNA damage response,were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining,H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs),an increase in dsb rejoining rate,and a decrease in Ku70/80. Unlike mouse ES,human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells,they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM,and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
00321
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Martin GR (DEC 1981)
Proceedings of the National Academy of Sciences of the United States of America 78 12 7634--8
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.
This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures,derived from isolated single cells,can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells,or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo,including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
View Publication
产品类型:
产品号#:
06902
06952
00321
00322
00323
00324
00325
产品名:
Lemoli RM et al. (SEP 2004)
Blood 104 6 1662--70
Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo.
Although extracellular nucleotides support a wide range of biologic responses of mature blood cells,little is known about their effect on blood cell progenitor cells. In this study,we assessed whether receptors for extracellular nucleotides (P2 receptors [P2Rs]) are expressed on human hematopoietic stem cells (HSCs),and whether activation by their natural ligands,adenosine triphosphate (ATP) and uridine triphosphate (UTP),induces HSC proliferation in vitro and in vivo. Our results demonstrated that CD34(+) HSCs express functional P2XRs and P2YRs of several subtypes. Furthermore,stimulation of CD34(+) cells with extracellular nucleotides caused a fast release of Ca(2+) from intracellular stores and an increase in ion fluxes across the plasma membrane. Functionally,ATP and,to a higher extent,UTP acted as potent early acting growth factors for HSCs,in vitro,because they strongly enhanced the stimulatory activity of several cytokines on clonogenic CD34(+) and lineage-negative CD34(-) progenitors and expanded more primitive CD34(+)-derived long-term culture-initiating cells. Furthermore,xenogenic transplantation studies showed that short-term preincubation with UTP significantly expanded the number of marrow-repopulating HSCs in nonobese diabetic/severe combined immunodeficiency mice. Our data suggest that extracellular nucleotides may provide a novel and powerful tool to modulate HSC functions.
View Publication
产品类型:
产品号#:
04236
09500
产品名:
MethoCult™SF H4236
BIT 9500血清替代物
Hoebeke I et al. (APR 2006)
Blood 107 7 2879--81
Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells.
By retroviral overexpression of the Notch-1 intracellular domain (ICN) in human CD34+ hematopoietic stem cells (HSCs),we have shown previously that Notch-1 signaling promotes the T-cell fate and inhibits the monocyte and B-cell fate in several in vitro and in vivo differentiation assays. Here,we investigated whether the effects of constitutively active Notch-1 can be mimicked by overexpression of its downstream target gene HES1. Upon HES-1 retroviral transduction,human CD34+ stem cells had a different outcome in the differentiation assays as compared to ICN-transduced cells. Although HES-1 induced a partial block in B-cell development,it did not inhibit monocyte development and did not promote T/NK-cell-lineage differentiation. On the contrary,a higher percentage of HES-1-transduced stem cells remained CD34+. These experiments indicate that HES-1 alone is not able to substitute for Notch-1 signaling to induce T-cell differentiation of human CD34+ hematopoietic stem cells.
View Publication
产品类型:
产品号#:
18056
18056RF
产品名:
Lacout C et al. (SEP 2006)
Blood 108 5 1652--60
JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis.
A JAK2(V617F) mutation is frequently found in several BCR/ABL-negative myeloproliferative disorders. To address the contribution of this mutant to the pathogenesis of these different myeloproliferative disorders,we used an adoptive transfer of marrow cells transduced with a retrovirus expressing JAK2(V617F) in recipient irradiated mice. Hosts were analyzed during the 6 months after transplantation. For a period of 3 months,mice developed polycythemia,macrocytosis and usually peripheral blood granulocytosis. Transient thrombocytosis was only observed in a low-expresser group. All mice displayed trilineage hyperplasia in marrow and spleen along with an amplification of myeloid and erythroid progenitor cells and a formation of endogenous erythroid colonies. After 3 to 4 months,polycythemia regressed,abnormally shaped red blood cells and platelets were seen in circulation,and a deposition of reticulin fibers was observed in marrow and spleen. Development of fibrosis was associated with anemia,thrombocytopenia,high neutrophilia,and massive splenomegaly. These features mimic human polycythemia vera and its evolution toward myelofibrosis. This work demonstrates that JAK2(V617F) is sufficient for polycythemia and fibrosis development and offers an in vivo model to assess novel therapeutic approaches for JAK2(V617F)-positive pathologies. Questions remain regarding the exact contribution of JAK2(V617F) in other myeloproliferative disorders.
View Publication
产品类型:
产品号#:
03234
产品名:
MethoCult™M3234
Priestley GV et al. (JAN 2007)
Blood 109 1 109--11
Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous.
We have generated Tie2Cre+alpha4(f/f) mice with documented alpha4-integrin ablation in hematopoietic and endothelial cells. A prominent feature in this model is a sustained,significant increase in circulating progenitors at levels higher than the levels seen with Tie2Cre+VCAM-1(f/f) mice. To test whether phenotypic differences are due to contributions by ligands other than VCAM-1 in bone marrow,or to alpha4-deficient endothelial cells or pericytes,we carried out transplantation experiments using these mice as donors or as recipients. Changes in progenitor biodistribution after transplantation were seen only with alpha4-deficient donor cells,suggesting that these cells were necessary and sufficient to reproduce the phenotype with no discernible contribution by alpha4-deficient nonhematopoietic cells. Because several similarities are seen after transplantation between our results and those with CXCR4-/- donor cells,the data suggest that VLA4/VCAM-1 and CXCR4/CXCL12 pathways contribute to a nonredundant,ongoing signaling required for bone marrow retention of progenitor cells during homeostasis.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Zhao H et al. (JAN 2009)
Blood 113 3 505--16
The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells.
The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment,proliferation,and differentiation. Given its critical functions,c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to posttranscriptional regulation by microRNA (miRNA)-15a. Using a luciferase reporter assay,we found that miR-15a directly binds the 3'-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic,functionality of binding was shown. The mimic decreased c-Myb expression,and blocked the cells in the G(1) phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3'-UTR partially rescued the miR-15a induced cell-cycle block. Of interest,the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally,in studies using normal human CD34(+) cells,we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation,and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate,these findings suggest the presence of a c-Myb-miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis.
View Publication
产品类型:
产品号#:
09500
产品名:
BIT 9500血清替代物
Zheng J et al. (JAN 2011)
Blood 117 2 470--9
Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche.
The physiologic roles of angiopoietin-like proteins (Angptls) in the hematopoietic system remain unknown. Here we show that hematopoietic stem cells (HSCs) in Angptl3-null mice are decreased in number and quiescence. HSCs transplanted into Angptl3-null recipient mice exhibited impaired repopulation. Bone marrow sinusoidal endothelial cells express high levels of Angptl3 and are adjacent to HSCs. Importantly,bone marrow stromal cells or endothelium deficient in Angptl3 have a significantly decreased ability to support the expansion of repopulating HSCs. Angptl3 represses the expression of the transcription factor Ikaros,whose unregulated overexpression diminishes the repopulation activity of HSCs. Angptl3,as an extrinsic factor,thus supports the stemness of HSCs in the bone marrow niche.
View Publication
产品类型:
产品号#:
03630
03334
03434
03444
09600
09650
28600
产品名:
MethoCult™M3630
MethoCult™M3334
MethoCult™GF M3434
MethoCult™GF M3434
StemSpan™ SFEM
StemSpan™ SFEM
L-Calc™有限稀释软件
Tolar J et al. (JAN 2011)
Blood 117 3 839--47
Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome).
Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a congenital deficiency of α-L-iduronidase,leading to lysosomal storage of glycosaminoglycans that is ultimately fatal following an insidious onset after birth. Hematopoietic cell transplantation (HCT) is a life-saving measure in MPS IH. However,because a suitable hematopoietic donor is not found for everyone,because HCT is associated with significant morbidity and mortality,and because there is no known benefit of immune reaction between the host and the donor cells in MPS IH,gene-corrected autologous stem cells may be the ideal graft for HCT. Thus,we generated induced pluripotent stem cells from 2 patients with MPS IH (MPS-iPS cells). We found that α-L-iduronidase was not required for stem cell renewal,and that MPS-iPS cells showed lysosomal storage characteristic of MPS IH and could be differentiated to both hematopoietic and nonhematopoietic cells. The specific epigenetic profile associated with de-differentiation of MPS IH fibroblasts into MPS-iPS cells was maintained when MPS-iPS cells are gene-corrected with virally delivered α-L-iduronidase. These data underscore the potential of MPS-iPS cells to generate autologous hematopoietic grafts devoid of immunologic complications of allogeneic transplantation,as well as generating nonhematopoietic cells with the potential to treat anatomical sites not fully corrected with HCT.
View Publication
产品类型:
产品号#:
27845
27945
27840
27865
27940
27965
产品名:
Calado RT et al. (SEP 2009)
Blood 114 11 2236--43
Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells.
Androgens have been used in the treatment of bone marrow failure syndromes without a clear understanding of their mechanism of action. Blood counts of patients with dyskeratosis congenita or aplastic anemia with mutations in telomerase genes can improve with androgen therapy. Here we observed that exposure in vitro of normal peripheral blood lymphocytes and human bone marrow-derived CD34(+) cells to androgens increased telomerase activity,coincident with higher TERT mRNA levels. Cells from patients who were heterozygous for telomerase mutations had low baseline telomerase activity,which was restored to normal levels by exposure to androgens. Estradiol had an effect similar to androgens on TERT gene expression and telomerase enzymatic activity. Tamoxifen abolished the effects of both estradiol and androgens on telomerase function,and letrozole,an aromatase inhibitor,blocked androgen effects on telomerase activity. Conversely,flutamide,an androgen receptor antagonist,did not affect androgen stimulation of telomerase. Down-regulation by siRNA of estrogen receptor-alpha (ER alpha),but not ER beta,inhibited estrogen-stimulated telomerase function. Our results provide a mechanism for androgen therapy in bone marrow failure: androgens appear to regulate telomerase expression and activity mainly by aromatization and through ER alpha. These findings have potential implications for the choice of current androgenic compounds and the development of future agents for clinical use.
View Publication