Mateizel I et al. (OCT 2009)
Human reproduction (Oxford,England) 24 10 2477--89
Characterization of CD30 expression in human embryonic stem cell lines cultured in serum-free media and passaged mechanically
BACKGROUND: The presence of chromosomal abnormalities could have a negative impact for human embryonic stem cell (hESC) applications both in regenerative medicine and in research. A biomarker that allows the identification of chromosomal abnormalities induced in hESC in culture before they take over the culture would represent an important tool for defining optimal culture conditions for hESC. Here we investigate the expression of CD30,reported to be a biomarker of hESCs with abnormal karyotype,in undifferentiated and spontaneously differentiated hESC.backslashnbackslashnMETHODS AND RESULTS: hESC were derived and cultured on mouse fibroblasts in KO-SR containing medium (serum free media) and passaged mechanically. Our results based on analysis at mRNA (RT-PCR) and protein (fluorescence-activated cell sorting and immunocytochemistry) level show that CD30 is expressed in undifferentiated hESC,even at very early passages,without any correlation with the presence of chromosomal anomalies. We also show that the expression of CD30 is rapidly lost during early spontaneous differentiation of hESC.backslashnbackslashnCONCLUSION: We conclude that CD30 expression in hESC cultures is probably a consequence of culture conditions,and that KO-SR may play a role. In addition,the expression of so-called 'stemness' markers does not change in undifferentiated hESC during long-term culture or when cells acquire chromosomal abnormalities.
View Publication
Xu X et al. ( 2010)
Biotechnology progress 26 3 781--8
Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation.
Due to widespread applications of human embryonic stem (hES) cells,it is essential to establish effective protocols for cryopreservation and subsequent culture of hES cells to improve cell recovery. We have developed a new protocol for cryopreservation of dissociated hES cells and subsequent culture. We examined the effects of new formula of freezing solution containing 7.5% dimethylsulfoxide (DMSO) (v/v %) and 2.5% polyethylene glycol (PEG) (w/v %) on cell survival and recovery of hES cells after cryopreservation,and further investigated the role of the combination of Rho-associated kinase (ROCK) inhibitor and p53 inhibitor on cell recovery during the subsequent culture. Compared with the conventional slow-freezing method which uses 10% DMSO as a freezing solution and then cultured in the presence of ROCK inhibitor at the first day of culture,we found out that hES cell recovery was significantly enhanced by around 30 % (P textless 0.05) by the new freezing solution. Moreover,at the first day of post-thaw culture,the presence of 10 microM ROCK inhibitor (Y-27632) and 1 microM pifithrin-mu together further significantly improved cell recovery by around 20% (P textless 0.05) either for feeder-dependent or feeder-independent culture. hES cells remained their undifferentiated status after using this novel protocol for cryopreservation and subsequent culture. Furthermore,this protocol is a scalable cryopreservation method for handling large quantities of hES cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72802
72804
85850
85857
85870
85875
产品名:
Pifithrin-mu
mTeSR™1
mTeSR™1
Moralli D et al. (JUN 2011)
Stem Cell Reviews and Reports 7 2 471--477
An Improved Technique for Chromosomal Analysis of Human ES and iPS Cells
Prolonged in vitro culture of human embryonic stem (hES) cells can result in chromosomal abnormalities believed to confer a selective advantage. This potential occurrence has crucial implications for the appropriate use of hES cells for research and therapeutic purposes. In view of this,time-point karyotypic evaluation to assess genetic stability is recommended as a necessary control test to be carried out during extensive 'passaging'. Standard techniques currently used for the cytogenetic assessment of ES cells include G-banding and/or Fluorescence in situ Hybridization (FISH)-based protocols for karyotype analysis,including M-FISH and SKY. Critical for both banding and FISH techniques are the number and quality of metaphase spreads available for analysis at the microscope. Protocols for chromosome preparation from hES and human induced pluripotent stem (hiPS) cells published so far appear to differ considerably from one laboratory to another. Here we present an optimized technique,in which both the number and the quality of chromosome metaphase spreads were substantially improved when compared to current standard techniques for chromosome preparations. We believe our protocol represents a significant advancement in this line of work,and has the required attributes of simplicity and consistency to be widely accepted as a reference method for high quality,fast chromosomal analysis of human ES and iPS cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Dec 2024)
STAR Protocols 6 1
Protocol for generating human craniofacial cartilage organoids from stem-cell-derived neural crest cells
SummaryHere,we present a protocol to generate craniofacial cartilage organoids from human stem cells via neural crest stem cells (NCSCs). We describe steps for inducing human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to form NCSCs using sequential treatments of small molecules and growth factors and isolating NCSCs by magnetic bead sorting. We then detail procedures for defining conditions where NCSCs migrate together and self-organize into craniofacial cartilage organoids. Recapitulating craniofacial chondrogenesis will facilitate craniofacial reconstruction and disease modeling.For complete details on the use and execution of this protocol,please refer to Foltz et al.1 Graphical abstract Highlights•Protocol for inducing hESCs or iPSCs to form neural crest stem cells (NCSCs)•Steps for differentiating NCSCs into craniofacial cartilage organoids•Instructions for preparing appropriate media and conditions for differentiation•Guidance for assessing changes in cell and organoid morphology during differentiation Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Here,we present a protocol to generate craniofacial cartilage organoids from human stem cells via neural crest stem cells (NCSCs). We describe steps for inducing human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to form NCSCs using sequential treatments of small molecules and growth factors and isolating NCSCs by magnetic bead sorting. We then detail procedures for defining conditions where NCSCs migrate together and self-organize into craniofacial cartilage organoids. Recapitulating craniofacial chondrogenesis will facilitate craniofacial reconstruction and disease modeling.
View Publication
产品类型:
产品号#:
20164
100-0047
产品名:
RoboSep™ 缓冲液 2
EasySep™ Release 人PSC来源神经嵴细胞正选试剂盒
Siatskas C et al. (OCT 2005)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19 12 1752--4
Specific pharmacological dimerization of KDR in lentivirally transduced human hematopoietic cells activates anti-apoptotic and proliferative mechanisms.
Selective and regulatable expansion of transduced cells could augment gene therapy for many disorders. The activation of modified growth factor receptors via synthetic chemical inducers of dimerization allows for the coordinated growth of transduced cells. This system can also provide information on specific receptor-mediated signaling without interference from other family members. Although several receptor subunits have been investigated in this context,little is known about the precise molecular events associated with dimerizer-initiated signaling. We have constructed and expressed an AP20187-regulated KDR chimeric receptor in human TF1 cells and analyzed activation of this gene switch using functional,biochemical,and microarray analyses. When deprived of natural ligands,GM-CSF,interleukin-3,or erythropoietin,AP20187 prevented apoptosis of transduced TF1 cells,induced dose-dependent proliferation,and supported long-term growth. In addition,AP20187 stimulation activated the signaling molecules associated with mitogen-activated protein kinase and phosphatidyl-inositol 3-kinase/Akt pathways. Microarray analysis determined that a number of transcripts involved in a variety of cellular processes were differentially expressed. Notably,mRNAs affiliated with heat stress,including Hsp70 and Hsp105,were up-regulated. Functional assays showed that Hsp70 and Hsp105 protected transduced TF1 cells from apoptosis and premature senescence,in part through regulation of Akt. These observations delineate specific roles for kinase insert domain-containing receptor,or KDR,signaling and suggest strategies to endow genetically modified cells with a survival advantage enabling the generation of adequate cell numbers for therapeutic outcomes.
View Publication
产品类型:
产品号#:
04230
84434
84444
产品名:
MethoCult™H4230
Romanov YA et al. (JAN 2003)
Stem cells (Dayton,Ohio) 21 1 105--10
Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord.
Mesenchymal stem cells (MSCs) have the capability for renewal and differentiation into various lineages of mesenchymal tissues. These features of MSCs attract a lot of attention from investigators in the context of cell-based therapies of several human diseases. Despite the fact that bone marrow represents the main available source of MSCs,the use of bone marrow-derived cells is not always acceptable due to the high degree of viral infection and the significant drop in cell number and proliferative/differentiation capacity with age. Thus,the search for possible alternative MSC sources remains to be validated. Umbilical cord blood is a rich source of hematopoietic stem/progenitor cells and does not contain mesenchymal progenitors. However,MSCs circulate in the blood of preterm fetuses and may be successfully isolated and expanded. Where these cells home at the end of gestation is not clear. In this investigation,we have made an attempt to isolate MSCs from the subendothelial layer of umbilical cord vein using two standard methodological approaches: the routine isolation of human umbilical vein endothelial cell protocol and culture of isolated cells under conditions appropriate for bone-marrow-derived MSCs. Our results suggest that cord vasculature contains a high number of MSC-like elements forming colonies of fibroblastoid cells that may be successfully expanded in culture. These MSC-like cells contain no endothelium- or leukocyte-specific antigens but express alpha-smooth muscle actin and several mesenchymal cell markers. Therefore,umbilical cord/placenta stroma could be regarded as an alternative source of MSCs for experimental and clinical needs.
View Publication
产品类型:
产品号#:
产品名:
Hess DA et al. (MAR 2006)
Blood 107 5 2162--9
Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells.
The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDH(hi)Lin- cells). Here,we further dissected the ALDH(hi)-Lin- population by selection for CD133,a surface molecule expressed on progenitors from hematopoietic,endothelial,and neural lineages. ALDH(hi)CD133+Lin- cells were primarily CD34+,but also included CD34-CD38-CD133+ cells,a phenotype previously associated with repopulating function. Both ALDH(hi)CD133-Lin- and ALDH(hi)CD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro,whereas only the ALDH(hi)CD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID beta2M-null mice that received transplants of ALDH(hi)CD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells,suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDH(hi)CD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial,secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies.
View Publication
Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells.
We have investigated the potential of stirred suspension cultures to support hematopoiesis from starting innocula of normal human bone marrow cells. Initial studies showed that the short-term maintenance of both colony-forming cell (CFC) numbers and their precursors,detected as long-term culture-initiating cells (LTC-IC),could be achieved as well in stirred suspension cultures as in static cultures. Neither of these progenitor cell populations was affected in either type of culture when porous microcarriers were added to provide an increased surface for adherent cell attachment. Supplementation of the medium with 10 ng/ml of Steel factor (SF) and 2 ng/ml of interleukin-3 (IL-3) resulted in a significant expansion of LTC-IC,CFC and total cell numbers in stirred cultures. Both the duration and ultimate magnitude of these expansions were correlated with the initial cell density and after 4 weeks the number of LTC-IC and CFC present in stirred cultures initiated with the highest starting cell concentration tested reflected average increases of 7- and 22-fold,respectively,above input values. Stirred suspension cultures offer the combined advantages of homogeneity and lack of dependence on the formation and maintenance of an adherent cell layer. Our results suggest their applicability to the development of scaled-up bioreactor systems for clinical procedures requiring the production of primitive hematopoietic cell populations. In addition,stirred suspension cultures may offer a new tool for the analysis of hematopoietic regulatory mechanisms.
View Publication
产品类型:
产品号#:
05150
05350
产品名:
MyeloCult™H5100
M. Lora et al. (Apr 2025)
Clinical and Translational Science 18 5
Low Dose Methotrexate Has Divergent Effects on Cycling and Resting Human Hematopoietic Stem and Progenitor Cells
Low dose methotrexate (LD‐MTX) remains the gold standard in rheumatoid arthritis (RA) therapy. Multiple mechanisms on a variety of immune cells contribute to the anti‐inflammatory effects of LD‐MTX. Inflammatory signaling is deeply implicated in hematopoiesis by regulating hematopoietic stem and progenitor cell (HSPC) fate decisions; raising the question of whether HSPC are also modulated by LD‐MTX. This is the first study to characterize the effects of LD‐MTX on HSPC. CD34 + HSPC were isolated from healthy donors' non‐mobilized peripheral blood. Resting and/or cycling HSPCs were treated with LD‐MTX [dose equivalent to that used in RA patients]. Flow cytometry was performed to assess HSPC viability,cell cycle,surface abundance of reduced folate carrier 1 (RFC1),proliferation,reactive oxygen species (ROS) levels,DNA double‐strand breaks,p38 activation,and CD34 + subpopulations. HSPC clonogenicity was tested in colony‐forming cell assays. Our results indicate that in cycling HSPC,membrane RFC1 is upregulated and,following LD‐MTX treatment,they accumulate more intracellular MTX than resting HSPC. In cycling HSPC,LD‐MTX inhibits HSPC expansion by promoting S‐phase cell‐cycle arrest,increases intracellular HSPC ROS levels and DNA damage,and reduces HSPC viability. Those effects involve the activation of the p38 MAPK pathway and are rescued by folinic acid. The effects of LD‐MTX are more evident in CD34 + CD38High progenitors. In non‐cycling HSPC,LD‐MTX also reduces the proliferative response while preserving their clonogenicity. In summary,HSPC uptake LD‐MTX differentially according to their cycling state. In turn,LD‐MTX results in reduced proliferation and the preservation of HSPC clonogenicity.
View Publication
产品类型:
产品号#:
04034
04044
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
Akatsuka A et al. (SEP 2010)
International immunology 22 9 783--90
Tumor cells of non-hematopoietic and hematopoietic origins express activation-induced C-type lectin, the ligand for killer cell lectin-like receptor F1.
Killer cell lectin-like receptor F1 (KLRF1) is an activating C-type lectin-like receptor expressed on human NK cells and subsets of T cells. In this study,we show that activation-induced C-type lectin (AICL) is a unique KLRF1 ligand expressed on tumor cell lines of hematopoietic and non-hematopoietic origins. We screened a panel of human tumor cell lines using the KLRF1 reporter cells and found that several tumor lines expressed KLRF1 ligands. We characterized a putative KLRF1 ligand expressed on the U937 cell line. The molecular mass for the deglycosylated ligand was 28 kDa under non-reducing condition and 17 kDa under reducing condition,suggesting that the KLRF1 ligand is a homodimer. By expression cloning from a U937 cDNA library,we identified AICL as a KLRF1 ligand. We generated mAbs against AICL to identify the KLRF1 ligands on non-hematopoietic tumor lines. The anti-AICL mAbs stained the tumor lines that express the KLRF1 ligands and importantly the interaction of KLRF1 with the KLRF1 ligand on non-hematopoietic tumors was completely blocked by the two anti-AICL mAbs. Moreover,NK cell degranulation triggered by AICL-expressing targets was partially inhibited by the anti-AICL mAb. Finally,we demonstrate that AICL is expressed in human primary liver cancers. These results suggest that AICL is expressed on tumor cells of non-hematopoietic origins and raise the possibility that AICL may contribute to NK cell surveillance of tumor cells.
View Publication