Elliott E and Ginzburg I (JAN 2009)
FEBS letters 583 1 229--34
BAG-1 is preferentially expressed in neuronal precursor cells of the adult mouse brain and regulates their proliferation in vitro.
BAG-1 protein has been well characterized as necessary for proper neuronal development. However,little is known about the function of BAG-1 in the adult brain. In this work,the expression and localization of BAG-1 in the mature mouse brain was studied. The levels of both BAG-1 isoforms decrease significantly in the brain during development. BAG-1 was found preferentially expressed in Neuronal Precursor Cells (NPCs) in the two major niches of neurogenesis. Lentiviral mediated overexpression of BAG-1 increased the proliferation rate of cultured NPCs. In addition,depletion of BAG-1 from NPCs induced a decrease in NPCs proliferation in the presence of a stress hormone,corticosterone. These data suggest a role for BAG-1 in mechanisms of neurogenesis in the adult mouse brain.
View Publication
产品类型:
产品号#:
05700
05701
05702
产品名:
NeuroCult™ 基础培养基(小鼠&大鼠)
NeuroCult™ 扩增添加物 (小鼠&大鼠)
NeuroCult™ 扩增试剂盒 (小鼠&大鼠)
Ao A et al. (JAN 2012)
PloS one 7 7 e41627
DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells.
The possibility of using cell-based therapeutics to treat cardiac failure has generated significant interest since the initial introduction of stem cell-based technologies. However,the methods to quickly and robustly direct stem cell differentiation towards cardiac cell types have been limited by a reliance on recombinant growth factors to provide necessary biological cues. We report here the use of dorsomorphin homologue 1 (DMH1),a second-generation small molecule BMP inhibitor based on dorsomorphin,to efficiently induce beating cardiomyocyte formation in mouse embryonic stem cells (ESCs) and to specifically upregulate canonical transcriptional markers associated with cardiac development. DMH1 differs significantly from its predecessor by its ability to enrich for pro-cardiac progenitor cells that respond to late-stage Wnt inhibition using XAV939 and produce secondary beating cardiomyocytes. Our study demonstrates the utility of small molecules to complement existing in vitro cardiac differentiation protocols and highlights the role of transient BMP inhibition in cardiomyogenesis.
View Publication
SummaryInterleukin-33 (IL-33) is an immunoregulatory cytokine that moderately suppresses experimental autoimmune encephalomyelitis (EAE),a murine model of multiple sclerosis (MS). However,poor pharmacokinetics and toxicity hinder its clinical translation. To address these limitations,we develop an activity-attenuated IL-33 by recombinant fusion to serum albumin (SA). SA-IL-33 exhibits reduced toxicity and prolonged residence in the secondary lymphoid organs (SLOs),sites of T cell priming in autoimmunity,compared to wild-type (WT) IL-33. Prophylactic SA-IL-33 administration prevents EAE with superior efficacy to WT IL-33 and comparable efficacy to fingolimod (FTY720),a Food and Drug Administration (FDA)-approved MS drug. Therapeutic SA-IL-33 treatment also reduces disease severity in both chronic and relapsing-remitting EAE. SA-IL-33 modulates immunity in EAE by suppressing CD45+ cell infiltration (including myelin-reactive T helper 17 [TH17] cells) in the spinal cord,while expanding type 2 immune cells (including type 2 innate lymphoid cells [ILC2s],ST2+ regulatory T cells [Tregs],T helper 2 [TH2] cells,and M2-polarized macrophages) in the SLOs. These findings suggest that SA-IL-33 is a promising therapeutic for neuroinflammatory diseases. Graphical abstract Highlights•Fusion of serum albumin (SA) to interleukin-33 (IL-33) attenuates its activity and toxicity•Engineered SA-IL-33 exhibits prolonged residence in the secondary lymphoid organs (SLOs)•SA-IL-33 treatment both prevents the onset of and reduces established neuroinflammation in mice•Cytokine therapy suppresses TH17 cells in the CNS and promotes immunoregulation in the SLOs The clinical utility of interleukin-33 is hindered by poor pharmacokinetics and toxicity. Budina et al. develop a fusion of serum albumin and interleukin-33 (SA-IL-33) with reduced toxicity and prolonged lymph node residence. SA-IL-33 prevents the onset of and suppresses established inflammation-mediated paralysis in mice,demonstrating promise as a therapeutic for neuroinflammatory diseases.
View Publication
产品类型:
产品号#:
18000
19842
产品名:
EasySep™磁极
EasySep™小鼠ILC2富集试剂盒
Ruggeri L et al. (JUL 2007)
Blood 110 1 433--40
Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value.
We analyzed 112 patients with high-risk acute myeloid leukemia (61 in complete remission [CR]; 51 in relapse),who received human leukocyte-antigen (HLA)-haploidentical transplants from natural killer (NK) alloreactive (n = 51) or non-NK alloreactive donors (n = 61). NK alloreactive donors possessed HLA class I,killer-cell immunoglobulin-like receptor (KIR) ligand(s) which were missing in the recipients,KIR gene(s) for missing self recognition on recipient targets,and alloreactive NK clones against recipient targets. Transplantation from NK-alloreactive donors was associated with a significantly lower relapse rate in patients transplanted in CR (3% versus 47%) (P textgreater .003),better event-free survival in patients transplanted in relapse (34% versus 6%,P = .04) and in remission (67% versus 18%,P = .02),and reduced risk of relapse or death (relative risk versus non-NK-alloreactive donor,0.48; 95% CI,0.29-0.78; P textgreater .001). In all patients we tested the missing ligand" model which pools KIR ligand mismatched transplants and KIR ligand-matched transplants from donors possessing KIR(s) for which neither donor nor recipient have HLA ligand(s). Only transplantation from NK-alloreactive donors is associated with a survival advantage."
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Haniffa M et al. (FEB 2009)
The Journal of experimental medicine 206 2 371--85
Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation.
Animal models of hematopoietic stem cell transplantation have been used to analyze the turnover of bone marrow-derived cells and to demonstrate the critical role of recipient antigen-presenting cells (APC) in graft versus host disease (GVHD). In humans,the phenotype and lineage relationships of myeloid-derived tissue APC remain incompletely understood. It has also been proposed that the risk of acute GVHD,which extends over many months,is related to the protracted survival of certain recipient APC. Human dermis contains three principal subsets of CD45(+)HLA-DR(+) cells: CD1a(+)CD14(-) DC,CD1a(-)CD14(+) DC,and CD1a(-)CD14(+)FXIIIa(+) macrophages. In vitro,each subset has characteristic properties. After transplantation,both CD1a(+) and CD14(+) DC are rapidly depleted and replaced by donor cells,but recipient macrophages can be found in GVHD lesions and may persist for many months. Macrophages isolated from normal dermis secrete proinflammatory cytokines. Although they stimulate little proliferation of naive or memory CD4(+) T cells,macrophages induce cytokine expression in memory CD4(+) T cells and activation and proliferation of CD8(+) T cells. These observations suggest that dermal macrophages and DC are from distinct lineages and that persistent recipient macrophages,although unlikely to initiate alloreactivity,may contribute to GVHD by sustaining the responses of previously activated T cells.
View Publication
产品类型:
产品号#:
19155
19155RF
产品名:
Larochelle A et al. (FEB 2011)
Blood 117 5 1550--4
Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers.
Various combinations of antibodies directed to cell surface markers have been used to isolate human and rhesus macaque hematopoietic stem cells (HSCs). These protocols result in poor enrichment or require multiple complex steps. Recently,a simple phenotype for HSCs based on cell surface markers from the signaling lymphocyte activation molecule (SLAM) family of receptors has been reported in the mouse. We examined the possibility of using the SLAM markers to facilitate the isolation of highly enriched populations of HSCs in humans and rhesus macaques. We isolated SLAM (CD150(+)CD48(-)) and non-SLAM (not CD150(+)CD48(-)) cells from human umbilical cord blood CD34(+) cells as well as from human and rhesus macaque mobilized peripheral blood CD34(+) cells and compared their ability to form colonies in vitro and reconstitute immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 γc receptor(null),NSG) mice. We found that the CD34(+) SLAM population contributed equally or less to colony formation in vitro and to long-term reconstitution in NSG mice compared with the CD34(+) non-SLAM population. Thus,SLAM family markers do not permit the same degree of HSC enrichment in humans and rhesus macaques as in mice.
View Publication
产品类型:
产品号#:
04435
04445
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
D. T. Claiborne et al. (Jan 2025)
Nature Communications 16
High frequency CCR5 editing in human hematopoietic stem progenitor cells protects xenograft mice from HIV infection
The only cure of HIV has been achieved in a small number of people who received a hematopoietic stem cell transplant (HSCT) comprising allogeneic cells carrying a rare,naturally occurring,homozygous deletion in the CCR5 gene. The rarity of the mutation and the significant morbidity and mortality of such allogeneic transplants precludes widespread adoption of this HIV cure. Here,we show the application of CRISPR/Cas9 to achieve >90% CCR5 editing in human,mobilized hematopoietic stem progenitor cells (HSPC),resulting in a transplant that undergoes normal hematopoiesis,produces CCR5 null T cells,and renders xenograft mice refractory to HIV infection. Titration studies transplanting decreasing frequencies of CCR5 edited HSPCs demonstrate that <90% CCR5 editing confers decreasing protective benefit that becomes negligible between 54% and 26%. Our study demonstrates the feasibility of using CRISPR/Cas9/RNP to produce an HSPC transplant with high frequency CCR5 editing that is refractory to HIV replication. These results raise the potential of using CRISPR/Cas9 to produce a curative autologous HSCT and bring us closer to the development of a cure for HIV infection. Subject terms: HIV infections,CRISPR-Cas9 genome editing,Retrovirus,Translational research
View Publication
产品类型:
产品号#:
04034
04044
22001
22005
22006
22007
22008
22009
22011
22012
产品名:
MethoCult™H4034 Optimum
MethoCult™H4034 Optimum
STEMvision™ 人脐带血7-天CFU分析包
STEMvision™ 彩色人脐带血14-天CFU分析包
STEMvision™ 彩色人骨髓14-天CFU分析包
STEMvision™ 彩色人动员外周血14-天CFU分析包
STEMvision™ 小鼠总CFU分析包
STEMvision™ 小鼠髓系CFU分析包
STEMvision™ 小鼠红系CFU分析包
STEMvision™ 小鼠CFU分析包(髓系和红系)
Dykstra B et al. (MAY 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 21 8185--90
High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal.
To search for new indicators of self-renewing hematopoietic stem cells (HSCs),highly purified populations were isolated from adult mouse marrow,micromanipulated into a specially designed microscopic array,and cultured for 4 days in 300 ng/ml Steel factor,20 ng/ml IL-11,and 1 ng/ml flt3-ligand. During this period,each cell and its progeny were imaged at 3-min intervals by using digital time-lapse photography. Individual clones were then harvested and assayed for HSCs in mice by using a 4-month multilineage repopulation endpoint (textgreater1% contribution to lymphoid and myeloid lineages). In a first experiment,6 of 14 initial cells (43%) and 17 of 61 clones (28%) had HSC activity,demonstrating that HSC self-renewal divisions had occurred in vitro. Characteristics associated with HSC activity included longer cell-cycle times and the absence of uropodia on a majority of cells within the clone during the final 12 h of culture. Combining these criteria maximized the distinction of clones with HSC activity from those without and identified a subset of 27 of the 61 clones. These 27 clones included all 17 clones that had HSC activity; a detection efficiency of 63% (2.26 times more frequently than in the original group). The utility of these characteristics for discriminating HSC-containing clones was confirmed in two independent experiments where all HSC-containing clones were identified at a similar 2- to 3-fold-greater efficiency. These studies illustrate the potential of this monitoring system to detect new features of proliferating HSCs that are predictive of self-renewal divisions.
View Publication
产品类型:
产品号#:
19756
19756RF
产品名:
Nishino T et al. (JAN 2011)
PloS one 6 9 e24298
Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase.
BACKGROUND: Human cord blood (hCB) is the main source of hematopoietic stem and progenitor cells (HSCs/PCs) for transplantation. Efforts to overcome relative shortages of HSCs/PCs have led to technologies to expand HSCs/PCs ex vivo. However,methods suitable for clinical practice have yet to be fully established. METHODOLOGY/PRINCIPAL FINDINGS: In this study,we screened biologically active natural products for activity to promote expansion of hCB HSCs/PCs ex vivo,and identified Garcinol,a plant-derived histone acetyltransferase (HAT) inhibitor,as a novel stimulator of hCB HSC/PC expansion. During a 7-day culture of CD34(+)CD38(-) HSCs supplemented with stem cell factor and thrombopoietin,Garcinol increased numbers of CD34(+)CD38(-) HSCs/PCs more than 4.5-fold and Isogarcinol,a derivative of Garcinol,7.4-fold. Furthermore,during a 7-day culture of CD34(+) HSCs/PCs,Garcinol expanded the number of SCID-repopulating cells (SRCs) 2.5-fold. We also demonstrated that the capacity of Garcinol and its derivatives to expand HSCs/PCs was closely correlated with their inhibitory effect on HAT. The Garcinol derivatives which expanded HSCs/PCs inhibited the HAT activity and acetylation of histones,while inactive derivatives did not. CONCLUSIONS/SIGNIFICANCE: Our findings identify Garcinol as the first natural product acting on HSCs/PCs and suggest the inhibition of HAT to be an alternative approach for manipulating HSCs/PCs.
View Publication
产品类型:
产品号#:
72452
产品名:
Garcinol
Chute JP et al. (AUG 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 31 11707--12
Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells.
Aldehyde dehydrogenase (ALDH) is an enzyme that is expressed in the liver and is required for the conversion of retinol (vitamin A) to retinoic acids. ALDH is also highly enriched in hematopoietic stem cells (HSCs) and is considered a selectable marker of human HSCs,although its contribution to stem cell fate remains unknown. In this study,we demonstrate that ALDH is a key regulator of HSC differentiation. Inhibition of ALDH with diethylaminobenzaldehyde (DEAB) delayed the differentiation of human HSCs that otherwise occurred in response to cytokines. Moreover,short-term culture with DEAB caused a 3.4-fold expansion in the most primitive assayable human cells,the nonobese diabetic/severe combined immunodeficiency mouse repopulating cells,compared with day 0 CD34(+)CD38(-)lin(-) cells. The effects of DEAB on HSC differentiation could be reversed by the coadministration of the retinoic acid receptor agonist,all-trans-retinoic acid,suggesting that the ability of ALDH to generate retinoic acids is important in determining HSC fate. DEAB treatment also caused a decrease in retinoic acid receptor-mediated signaling within human HSCs,suggesting directly that inhibition of ALDH promotes HSC self-renewal via reduction of retinoic acid activity. Modulation of ALDH activity and retinoid signaling is a previously unrecognized and effective strategy to amplify human HSCs.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
M. Xiong et al. (Sep 2024)
Stem Cell Research & Therapy 15 13
Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood
Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly,the relationships between dynamic metabolic alterations and their functions remain poorly characterized. In this study,we comprehensively described the proteomics of HSPCs in the human fetal liver (FL),umbilical cord blood (UCB),and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay,RT‒PCR,and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production,the metabolic state,and the expansion of human HSPCs,HSPCs were treated with buthionine sulfoximine (BSO),an inhibitor of glutathione synthetase,and N-acetyl-L-cysteine (NAC). We investigated the metabolomic landscape of human HSPCs from the fetal,perinatal,and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays,mitochondrial activity,ROS level,glucose uptake,and protein synthesis rate analysis supported our findings. In addition,immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs,indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore,the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. The metabolic landscape of human HSPCs at three developmental stages (FL,UCB,and aBM),combined with proteomics and functional validations,substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life. The online version contains supplementary material available at 10.1186/s13287-024-03930-x.
View Publication
产品类型:
产品号#:
09600
09605
09650
09655
产品名:
StemSpan™ SFEM
StemSpan™ SFEM II
StemSpan™ SFEM
StemSpan™ SFEM II
Liu J et al. (NOV 2015)
Nature Protocols 10 11 1842--59
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.
Targeted nucleases,including zinc-finger nucleases (ZFNs),transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9),have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However,realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids,the direct delivery of nuclease proteins to cells provides rapid action and fast turnover,leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression,purification and delivery of ZFN proteins,which are intrinsically cell-permeable; TALEN proteins,which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein,whose nucleofection into cells facilitates rapid induction of multiplexed modifications,are described,along with procedures for evaluating nuclease protein activity. Once they are constructed,nuclease proteins can be expressed and purified within 6 d,and they can be used to induce genomic modifications in human cells within 2 d.
View Publication