Human CD34+-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy
IntroductionPlasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses,yet,their scarcity in blood coupled to their reduced functionality in cancer,makes their therapeutic use for in situ activation or vaccination challenging. MethodsWe designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next,we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore,we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients. ResultsHere,we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both,baseline and upon TLR9 or TLR7 stimulation. Further,we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants. DiscussionThis study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
View Publication
产品类型:
产品号#:
19055
产品名:
EasySep™人NK细胞富集试剂盒
F. Tang et al. (Oct 2024)
Stem Cell Research & Therapy 15
Genetically engineered human induced pluripotent stem cells for the production of brain-targeting extracellular vesicles
Extracellular vesicles (EVs) are cell-secreted membrane vesicles that have become a promising,natural nanoparticle system for delivering either naturally carried or exogenously loaded therapeutic molecules. Among reported cell sources for EV manufacture,human induced pluripotent stem cells (hiPSCs) offer numerous advantages. However,hiPSC-EVs only have a moderate ability for brain delivery. Herein,we sought to develop a stable hiPSC line for producing EVs with substantially enhanced brain targeting by genetic engineering to overexpress rabies viral glycoprotein (RVG) peptide fused to the N terminus of lysosomal associated membrane protein 2B (RVG-Lamp2B) which has been shown capable of boosting the brain delivery of EVs via the nicotinic acetylcholine receptor. An RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. Western blot was used to detect the expression of RVG-Lamp2B-HA in RVG-edited hiPSCs as well as EVs derived from RVG-edited hiPSCs. Uptake of EVs by SH-SY5Y cells in the presence of various endocytic inhibitors was analyzed using flow cytometry. Biodistribution and brain delivery of intravenously injected control and RVG-modified EVs in wild-type mice were examined using ex vivo fluorescent imaging. Here we report that an RVG-Lamp2B-HA expression cassette was knocked into the AAVS1 safe harbor locus of a control hiPSC line using the CRISPR/Cas9-assisted homologous recombination. The RVG-edited iPSCs have normal karyotype,express pluripotency markers,and have differentiation potential. Expression of RVG-Lamp2B-HA was detected in total cell extracts as well as EVs derived from RVG-edited (vs. control) hiPSCs. The RVG-modified EVs enter neuronal cells via distinct endocytic pathways,compared with control EVs. The biodistribution study confirmed that EVs derived from RVG-edited hiPSCs possess higher brain delivery efficiency. Taken together,we have established stable,genetically engineered hiPSCs for producing EVs with RVG expression,offering the improved ability for brain-targeted drug delivery. The online version contains supplementary material available at 10.1186/s13287-024-03955-2.
View Publication
ErbB4 Activated p38$$ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells
Activation of ErbB4 receptor signaling is instrumental in heart development,lack of which results in embryonic lethality. However,mechanism governing its intracellular signaling remains elusive. Using human pluripotent stem cells,we show that ErbB4 is critical for cardiogenesis whereby its genetic knockdown results in loss of cardiomyocytes. Phospho-proteome profiling and Western blot studies attribute this loss to inactivation of p38$\$ isoform which physically interacts with NKx2.5 and GATA4 transcription factors. Post-cardiomyocyte formation p38$\$/NKx2.5 downregulation is followed by p38$\$/MEF2c upregulation suggesting stage-specific developmental roles of p38 MAPK isoforms. Knockdown of p38$\$ similarly disrupts cardiomyocyte formation in spite of the presence of NKx2.5. Cell fractionation and NKx2.5 phosphorylation studies suggest inhibition of ErbB4-p38$\$ hinders NKx2.5 nuclear translocation during early cardiogenesis. This study reveals a novel pathway that directly links ErbB4 and p38$\$ the transcriptional machinery of NKx2.5-GATA4 complex which is critical for cardiomyocyte formation during mammalian heart development.
View Publication
Porayette P et al. (DEC 2007)
Biochemical and biophysical research communications 364 3 522--527
Amyloid-?? precursor protein expression and modulation in human embryonic stem cells: A novel role for human chorionic gonadotropin
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed adhesion and neuritogenic protein whose processing has previously been shown to be regulated by reproductive hormones including the gonadotropin luteinizing hormone (LH) in human neuroblastoma cells. We report for the first time the expression of AbetaPP in human embryonic stem (hES) cells at the mRNA and protein levels. Using N- and C-terminal antibodies against AbetaPP,we detected both the mature and immature forms of AbetaPP as well as truncated variants ( approximately 53kDa,47kDa,and 29kDa) by immunoblot analyses. Expression of AbetaPP is regulated by both the stemness of the cells and pregnancy-associated hormones. Addition of human chorionic gonadotropin,the fetal equivalent of LH that is dramatically elevated during pregnancy,markedly increased the expression of all AbetaPP forms. These results indicate a critical molecular signaling link between the hormonal environment of pregnancy and the expression of AbetaPP in hES cells that is suggestive of an important function for this protein during early human embryogenesis prior to the formation of neural precursor cells.
View Publication
Chen G et al. (AUG 2010)
Cell stem cell 7 2 240--8
Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.
Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity,junctional complexes,integrin-dependent matrix adhesion,and E-cadherin-dependent cell-cell adhesion,all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures,programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies,their viability is significantly reduced. Here,we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase,downregulation of myosin heavy chain,and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain,suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
72402
72404
85850
85857
85870
85875
产品名:
(-)-Blebbistatin
(-)-Blebbistatin
mTeSR™1
mTeSR™1
Zhang R et al. (JAN 2013)
Nature communications 4 1335
A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth,while mechanical,enzymatic or chemical cell dissociation methods are used for cellular passaging. However,these methods are ill defined,thus introducing variability into the system,and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate,which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle,reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used,undefined biological substrates represent a flexible and scalable approach for improving the definition,efficacy and safety of human embryonic stem cell culture systems for research,industrial and clinical applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Carpentier A et al. (MAR 2016)
Stem Cell Research 16 3 640--650
Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen
The establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism,genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs,the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells,which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation,metabolism,genetic network,and response to infection or other external stimuli.
View Publication
产品类型:
产品号#:
05110
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
STEMdiff™定型内胚层检测试剂盒
mTeSR™1
mTeSR™1
(Apr 2025)
International Journal of Molecular Sciences 26 7
Ex Vivo Plasma Application on Human Brain Microvascular Endothelial-like Cells for Blood–Brain Barrier Modeling
hiPSC-derived blood–brain barrier (BBB) models are valuable for pharmacological and physiological studies,yet their translational potential is limited due to insufficient cell phenotypes and the neglection of the complex environment of the BBB. This study evaluates the plasma compatibility with hiPSC-derived microvascular endothelial-like cells to enhance the translational potential of in vitro BBB models. Therefore,plasma samples (sodium/lithium heparin,citrate,EDTA) and serum from healthy donors were tested on hiPSC-derived microvascular endothelial-like cells at concentrations of 100%,75%,and 50%. After 24 h,cell viability parameters were assessed. The impact of heparin-anticoagulated plasmas was further evaluated regarding barrier function and endothelial phenotype of differentiated endothelial-like cells. Finally,sodium-heparin plasma was tested in an isogenic triple-culture BBB model with continuous TEER measurements for 72 h. Only the application of heparin-anticoagulated plasmas did not significantly alter viability parameters compared to medium. Furthermore,heparin plasmas improved barrier function without increasing cell density and induced a von Willebrand factor signal. Finally,continuous TEER measurements of the triple-culture model confirmed the positive impact of sodium-heparin plasma on barrier function. Consequently,heparin-anticoagulated plasmas were proven to be compatible with hiPSC-derived microvascular endothelial-like cells. Thereby,the translational potential of BBB models can be substantially improved in the future.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
(Oct 2024)
Nature Communications 15
Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control
Human induced pluripotent stem cells (iPSCs) have great potential in research,but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here,we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD,NANOG,SPP1),endoderm (CER1,EOMES,GATA6),mesoderm (APLNR,HAND1,HOXB7),and ectoderm (HES5,PAMR1,PAX6). Using these genes,we develop a machine learning-based scoring system,“hiPSCore”,trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time,subjectivity,and resource use,thus enhancing iPSC quality for scientific and medical applications. Quality control,including pluripotency testing of human iPSCs lacks standardization. Here,authors identify and validate gene markers to develop the machine learning-based hiPSCore to streamline pluripotency testing and elevate iPSC quality.
View Publication
产品类型:
产品号#:
05230
05310
08581
08582
100-0038
100-0041
100-0195
100-0651
产品名:
STEMdiff™ 三谱系分化试剂盒
STEMdiff™ 造血试剂盒
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
STEMdiff™中脑神经元分化试剂盒
STEMdiff™ 中脑神经元成熟试剂盒
STEMdiff™带分支结构的肺类器官试剂盒
STEMdiff™ 血管类器官试剂盒
A. Holtzinger et al. ( 2015)
Development (Cambridge,England) 142 4253-65
New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells.
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population,broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study,we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach,we identified two endoderm-specific antibodies,HDE1 and HDE2,which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential,whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination,the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line.
View Publication