Tracing genomic instability in induced mesenchymal stromal cell manufacture: an integration-free transfection approach
Here we systematically investigated genomic alterations from the initiation of induced pluripotent stem (iPS) cell generation to induced mesenchymal stromal/stem cell differentiation. We observed a total of ten copy number alterations (CNAs) and five single-nucleotide variations (SNVs) during the phases of reprogramming,differentiation and passaging. We identified a higher frequency of CNAs and SNVs in iPS cells generated using the Sendai virus (SV) method compared with those generated with episomal vectors (Epi). Specifically,all SV-iPS cell lines exhibited CNAs during the reprogramming phase,while only 40% of Epi-iPS cells showed such alterations. Additionally,SNVs were observed exclusively in SV-derived cells during passaging and differentiation,with no SNVs detected in Epi-derived lines. Gene expression analysis revealed upregulation of chromosomal instability-related genes in late-passage SV-iPSCs,further indicating increased genomic instability. Notably,TP53 mutations were identified,underscoring the vulnerability of the gene and the critical need for careful genomic scrutiny when preparing iPS cells and derived cell lines. Genomic instability in induced pluripotent stem cells revealedThis study explores the potential of using induced pluripotent stem (iPS) cells to create mesenchymal stem (MS) cells for medical treatments. iPS cells can be reprogrammed from regular cells and can become any cell type,including MS cells,which are important for tissue repair. However,a concern is that iPS cells might develop genetic changes that could affect their safety. Here researchers investigated these genetic changes during the creation and growth of iPS cells and their transformation into MS cells using advanced techniques such as chromosomal microarray and next-generation sequencing,alongside conventional methods. The study found that iPS cells often develop genetic alterations,which can persist as they are turned into MS cells. The results suggest that while iPS cells hold promise for regenerative medicine,careful monitoring of genetic stability is crucial. Future research should focus on improving methods to ensure safety of iPS cell-derived therapies.This summary was initially drafted using artificial intelligence,then revised and fact-checked by the author.
View Publication
Mirabelli P et al. (JAN 2008)
BMC physiology 8 1 13
Extended flow cytometry characterization of normal bone marrow progenitor cells by simultaneous detection of aldehyde dehydrogenase and early hematopoietic antigens: implication for erythroid differentiation studies.
BACKGROUND: Aldehyde dehydrogenase (ALDH) is a cytosolic enzyme highly expressed in hematopoietic precursors from cord blood and granulocyte-colony stimulating factor mobilized peripheral blood,as well as in bone marrow from patients with acute myeloblastic leukemia. As regards human normal bone marrow,detailed characterization of ALDH+ cells has been addressed by one single study (Gentry et al,2007). The goal of our work was to provide new information about the dissection of normal bone marrow progenitor cells based upon the simultaneous detection by flow cytometry of ALDH and early hematopoietic antigens,with particular attention to the expression of ALDH on erythroid precursors. To this aim,we used three kinds of approach: i) multidimensional analytical flow cytometry,detecting ALDH and early hematopoietic antigens in normal bone marrow; ii) fluorescence activated cell sorting of distinct subpopulations of progenitor cells,followed by in vitro induction of erythroid differentiation; iii) detection of ALDH+ cellular subsets in bone marrow from pure red cell aplasia patients. RESULTS: In normal bone marrow,we identified three populations of cells,namely ALDH+CD34+,ALDH-CD34+ and ALDH+CD34- (median percentages were 0.52,0.53 and 0.57,respectively). As compared to ALDH-CD34+ cells,ALDH+CD34+ cells expressed the phenotypic profile of primitive hematopoietic progenitor cells,with brighter expression of CD117 and CD133,accompanied by lower display of CD38 and CD45RA. Of interest,ALDH+CD34- population disclosed a straightforward erythroid commitment,on the basis of three orders of evidences. First of all,ALDH+CD34- cells showed a CD71bright,CD105+,CD45- phenotype. Secondly,induction of differentiation experiments evidenced a clear-cut expression of glycophorin A (CD235a). Finally,ALDH+CD34- precursors were not detectable in patients with pure red cell aplasia (PRCA). CONCLUSION: Our study,comparing surface antigen expression of ALDH+/CD34+,ALDH-/CD34+ and ALDH+/CD34- progenitor cell subsets in human bone marrow,clearly indicated that ALDH+CD34- cells are mainly committed towards erythropoiesis. To the best of our knowledge this finding is new and could be useful for basic studies about normal erythropoietic differentiation as well as for enabling the employment of ALDH as a red cell marker in polychromatic flow cytometry characterization of bone marrow from patients with aplastic anemia and myelodysplasia.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Singh KP et al. (JAN 2009)
Carcinogenesis 30 1 11--9
Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells.
The aryl hydrocarbon receptor (AhR) mediates the carcinogenicity of a family of environmental contaminants,the most potent being 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increased incidence of lymphoma and leukemia in humans is associated with TCDD exposure. Although AhR activation by TCDD has profound effects on the immune system,precise cellular and molecular mechanisms have yet to be determined. These studies tested the hypothesis that alteration of marrow populations following treatment of mice with TCDD is due to an effect on hematopoietic stem cells (HSCs). Treatment with TCDD resulted in an increased number and proliferation of bone marrow (BM) populations enriched for HSCs. There was a time-dependent decrease in B-lineage cells with a concomitant increase in myeloid populations. The decrease in the B-cell lineage colony-forming unit-preB progenitors along with a transient increase in myeloid progenitors were consistent with a skewing of lineage development from lymphoid to myeloid populations. However,HSCs from TCDD-treated mice exhibited diminished capacity to reconstitute and home to marrow of irradiated recipients. AhR messenger RNA was expressed in progenitor subsets but is downregulated during HSC proliferation. This result was consistent with the lack of response following the exposure of 5-fluorouracil-treated mice to TCDD. The direct exposure of cultured BM cells to TCDD inhibited the growth of immature hematopoietic progenitor cells,but not more mature lineage-restricted progenitors. Overall,these data are consistent with the hypothesis that TCDD,through AhR activation,alters the ability of HSCs to respond appropriately to signals within the marrow microenvironment.
View Publication
产品类型:
产品号#:
03231
产品名:
MethoCult™M3231
Takayama N et al. (DEC 2010)
The Journal of experimental medicine 207 13 2817--30
Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells.
Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells,but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors,we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation,reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a(+)CD42b(+) platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b(+) platelets were present in thrombi after laser-induced vessel wall injury. In contrast,sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression,decreased GATA1 expression,and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression,particularly its later decline,is key to producing functional platelets from selected iPSC clones.
View Publication
High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells.
High-throughput screening (HTS) of chemical libraries has become a critical tool in basic biology and drug discovery. However,its implementation and the adaptation of high-content assays to human embryonic stem cells (hESCs) have been hampered by multiple technical challenges. Here we present a strategy to adapt hESCs to HTS conditions,resulting in an assay suitable for the discovery of small molecules that drive hESC self-renewal or differentiation. Use of this new assay has led to the identification of several marketed drugs and natural compounds promoting short-term hESC maintenance and compounds directing early lineage choice during differentiation. Global gene expression analysis upon drug treatment defines known and novel pathways correlated to hESC self-renewal and differentiation. Our results demonstrate feasibility of hESC-based HTS and enhance the repertoire of chemical compounds for manipulating hESC fate. The availability of high-content assays should accelerate progress in basic and translational hESC biology.
View Publication
产品类型:
产品号#:
72752
72882
72884
产品名:
加替沙星(Gatifloxacin)
Sinomenine (Hydrochloride)
Nishimoto KP et al. (MAY 2011)
Regenerative medicine 6 3 303--18
Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency.
AIM: Dendritic cell (DC)-based vaccines are designed to exploit the intrinsic capacity of these highly effective antigen presenting cells to prime and boost antigen-specific T-cell immune responses. Successful development of DC-based vaccines will be dependent on the ability to utilize and harness the full potential of these potent immune stimulatory cells. Recent advances to generate DCs derived from human embryonic stem cells (hESCs) that are suitable for clinical use represent an alternative strategy from conventional approaches of using patient-specific DCs. Although the differentiation of hESC-derived DCs in serum-free defined conditions has been established,the stimulatory potential of these hESC-derived DCs have not been fully evaluated. METHODS: hESC-derived DCs were differentiated in serum-free defined culture conditions. The delivery of antigen into hESC-derived DCs was investigated using mRNA transfection and replication-deficient adenoviral vector transduction. hESC-derived DCs modified with antigen were evaluated for their capacity to stimulate antigen-specific T-cell responses with known HLA matching. Since IL-12 is a key cytokine that drives T-cell function,further enhancement of DC potency was evaluated by transfecting mRNA encoding the IL-12p70 protein into hESC-derived DCs. RESULTS: The transfection of mRNA into hESC-derived DCs was effective for heterologous protein expression. The efficiency of adenoviral vector transduction into hESC-derived DCs was poor. These mRNA-transfected DCs were capable of stimulating human telomerase reverse transcriptase antigen-specific T cells composed of varying degrees of HLA matching. In addition,we observed the transfection of mRNA encoding IL-12p70 enhanced the T-cell stimulation potency of hESC-derived DCs. CONCLUSION: These data provide support for the development and modification of hESC-derived DCs with mRNA as a potential strategy for the induction of T-cell-mediated immunity.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Asuri P et al. (FEB 2012)
Molecular therapy : the journal of the American Society of Gene Therapy 20 2 329--38
Directed Evolution of Adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However,natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs),which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities,and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (˜50%) to hPSCs,which are importantly accompanied by a considerable increase in gene-targeting frequencies,up to 0.12%. While this level is likely sufficient for numerous applications,we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (textgreater1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus,this study demonstrates that under appropriate selective pressures,AAV vectors can be created to mediate efficient gene targeting in hPSCs,alone or in the presence of ZFN- mediated double-stranded DNA breaks.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Lo SL et al. (MAY 2012)
Biochemical and biophysical research communications 421 3 616--620
A ??-sheet structure interacting peptide for intracellular protein delivery into human pluripotent stem cells and their derivatives
The advance in stem cell research relies largely on the efficiency and biocompatibility of technologies used to manipulate stem cells. In our previous study,we had designed an amphipathic peptide RV24 that can deliver proteins into cancer cell lines efficiently without significant side effects. Encouraged by this observation,we moved forward to test whether RV24 could be used to deliver proteins into human embryonic stem cells and human induced pluripotent stem cells. RV24 successfully mediated protein delivery into these pluripotent stem cells,as well as their derivatives including neural stem cells and dendritic cells. Based on NMR studies and particle surface charge measurements,we proposed that hydrophobic domain of RV24 interacts with ??-sheet structures of the proteins,followed by formation of peptide cage" to facilitate delivery across cellular membrane. These findings suggest the feasibility of using amphipathic peptide to deliver functional proteins intracellularly for stem cell research. ?? 2012 Elsevier Inc."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Fan Y et al. (NOV 2013)
Tissue Engineering Part A 20 3-4 131128071850006
Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
A prerequisite for the realization of human pluripotent stem cell (hPSC) therapies is the development of bioprocesses for generating clinically relevant quantities of undifferentiated hPSCs and their derivatives under xeno-free conditions. Microcarrier stirred-suspension bioreactors are an appealing modality for the scalable expansion and directed differentiation of hPSCs. Comparative analyses of commercially available microcarriers clearly show the need for developing synthetic substrates supporting the adhesion and growth of hPSCs in three-dimensional cultures under agitation-induced shear. Moreover,the low seeding efficiencies during microcarrier loading with hPSC clusters poses a significant process bottleneck. To that end,a novel protocol was developed increasing hPSC seeding efficiency from 30% to over 80% and substantially shortening the duration of microcarrier loading. Importantly,this method was combined with the engineering of polystyrene microcarriers by surface conjugation of a vitronectin-derived peptide,which was previously shown to support the growth of human embryonic stem cells. Cells proliferated on peptide-conjugated beads in static culture but widespread detachment was observed after exposure to stirring. This prompted additional treatment of the microcarriers with a synthetic polymer commonly used to enhance cell adhesion. hPSCs were successfully cultivated on these microcarriers in stirred suspension vessels for multiple consecutive passages with attachment efficiencies close to 40%. Cultured cells exhibited on average a 24-fold increase in concentration per 6-day passage,over 85% viability,and maintained a normal karyotype and the expression of pluripotency markers such as Nanog,Oct4,and SSEA4. When subjected to spontaneous differentiation in embryoid body cultures or directed differentiation to the three embryonic germ layers,the cells adopted respective fates displaying relevant markers. Lastly,engineered microcarriers were successfully utilized for the expansion and differentiation of hPSCs to mesoderm progeny in stirred suspension vessels. Hence,we demonstrate a strategy for the facile engineering of xeno-free microcarriers for stirred-suspension cultivation of hPSCs. Our findings support the use of microcarrier bioreactors for the scalable,xeno-free propagation and differentiation of human stem cells intended for therapies.
View Publication
Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival
Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP),we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region and binding site levels,IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3' UTR-enriched targets. RNA Bind-N-seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes,including a reduction in cell adhesion and increase in cell death. For cell adhesion,we find IMP1 maintains levels of integrin mRNA specifically regulating RNA stability of ITGB5 in hPSCs. Additionally,we show that IMP1 can be linked to hPSC survival via direct target BCL2. Thus,transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Li D et al. (MAY 2016)
Stem Cell Reports 6 5 717--728
Optimized Approaches for Generation of Integration-free iPSCs from Human Urine-Derived Cells with Small Molecules and Autologous Feeder
Generation of induced pluripotent stem cells (iPSCs) from human urine-derived cells (hUCs) provides a convenient and non-invasive way to obtain patient-specific iPSCs. However,many isolated hUCs exhibit very poor proliferation and are difficult to reprogram. In this study,we optimized reprogramming approaches for hUCs with very poor proliferation. We report here that a compound cocktail containing cyclic pifithrin-a (a P53 inhibitor),A-83-01,CHIR99021,thiazovivin,NaB,and PD0325901 significantly improves the reprogramming efficiency (170-fold more) for hUCs. In addition,we showed that replacement of Matrigel with autologous hUC feeders can overcome the reprogramming failure due to the massive cell death that occurs during delivery of reprogramming factors. In summary,we describe improved approaches to enable iPSC generation from hUCs that were otherwise difficult to reprogram,a valuable asset for banking patient-specific iPSCs.
View Publication