Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control
Human induced pluripotent stem cells (iPSCs) have great potential in research,but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here,we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD,NANOG,SPP1),endoderm (CER1,EOMES,GATA6),mesoderm (APLNR,HAND1,HOXB7),and ectoderm (HES5,PAMR1,PAX6). Using these genes,we develop a machine learning-based scoring system,“hiPSCore”,trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time,subjectivity,and resource use,thus enhancing iPSC quality for scientific and medical applications. Quality control,including pluripotency testing of human iPSCs lacks standardization. Here,authors identify and validate gene markers to develop the machine learning-based hiPSCore to streamline pluripotency testing and elevate iPSC quality.
View Publication
产品类型:
产品号#:
05230
05310
08581
08582
100-0038
100-0041
100-0195
100-0651
产品名:
STEMdiff™ 三谱系分化试剂盒
STEMdiff™ 造血试剂盒
STEMdiff™SMADi神经诱导试剂盒
STEMdiff™SMADi神经诱导试剂盒,2套
STEMdiff™中脑神经元分化试剂盒
STEMdiff™ 中脑神经元成熟试剂盒
STEMdiff™带分支结构的肺类器官试剂盒
STEMdiff™ 血管类器官试剂盒
Thordardottir S et al. (MAY 2014)
Stem cells and development 23 9 955--67
The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells.
The superiority of dendritic cells (DCs) as antigen-presenting cells has been exploited in numerous clinical trials,where generally monocyte-derived DCs (Mo-DCs) are injected to induce immunity in patients with cancer or infectious diseases. Despite promising expansion of antigen-specific T cells,the clinical responses following vaccination have been limited,indicating that further improvements of DC vaccine potency are necessary. Pre-clinical studies suggest that vaccination with combination of primary DC subsets,such as myeloid and plasmacytoid blood DCs (mDCs and pDCs,respectively),may result in stronger clinical responses. However,it is a challenge to obtain high enough numbers of primary DCs for immunotherapy,since their frequency in blood is very low. We therefore explored the possibility to generate them from hematopoietic progenitor cells (HPCs). Here,we show that by inhibiting the aryl hydrocarbon receptor with its antagonist StemRegenin 1 (SR1),clinical-scale numbers of functional BDCA2(+)BDCA4(+) pDCs,BDCA1(+) mDCs,and BDCA3(+)DNGR1(+) mDCs can be efficiently generated from human CD34(+) HPCs. The ex vivo-generated DCs were phenotypically and functionally comparable to peripheral blood DCs. They secreted high levels of pro-inflammatory cytokines such as interferon (IFN)-α,interleukin (IL)-12,and tumor necrosis factor (TNF)-α and upregulated co-stimulatory molecules and maturation markers following stimulation with Toll-like receptor (TLR) ligands. Further,they induced potent allogeneic T-cell responses and activated antigen-experienced T cells. These findings demonstrate that SR1 can be exploited to generate high numbers of functional pDCs and mDCs from CD34(+) HPCs,providing an alternative option to Mo-DCs for immunotherapy of patients with cancer or infections.
View Publication
产品类型:
产品号#:
72342
72344
72352
72354
产品名:
StemRegenin 1
StemRegenin 1
StemRegenin 1(盐酸盐)
StemRegenin 1(盐酸盐)
(Sep 2024)
Nature Communications 15
Sequence variants influencing the regulation of serum IgG subclass levels
Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4),encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here,we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years,we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma,autoimmune diseases,and blood traits. Seven variants map to the IGH locus,three to the Fcγ receptor (FCGR) locus,and two to the human leukocyte antigen (HLA) region,affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f),G2m(n) and G3m(b*) allotypes,and IgG1,IgG2 and IgG3,respectively. Additionally,we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3,ZPBP2,GSDMB,ORMDL3). Interestingly,the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics. Immunoglobulin G (IgG) is the main isotype of antibody in human blood. Here the authors describe 14 genetic variants that affect IgG levels in blood. The data provide new insight into the regulation of humoral immunity that could be useful in the development of antibody-based therapeutics.
View Publication
产品类型:
产品号#:
18000
产品名:
EasySep™磁极
Huang X et al. (JAN 2016)
Leukemia 30 1 144--53
Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression.
Although hematopoietic stem cells (HSC) are the best characterized and the most clinically used adult stem cells,efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by Oct4-activating compound 1 (OAC1) in CB CD34(+) cells enhanced ex vivo expansion of HSC,as determined by a rigorously defined set of markers for human HSC,and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5-fold increase in the number of SCID repopulating cells (SRCs) compared with that in day 0 uncultured CD34(+) cells and 6.3-fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells,as assessed by in vitro colony formation,were also enhanced. Furthermore,we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently,siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC.
View Publication
Behar RZ et al. (NOV 2012)
Journal of Pharmacological and Toxicological Methods 66 3 238--245
A method for rapid dose-response screening of environmental chemicals using human embryonic stem cells
Introduction: Human embryonic stem cells (hESC) provide an invaluable model for assessing the effects of environmental chemicals and drugs on human prenatal development. However,hESC are difficult to adapt to 96-well plate screening assays,because they survive best when plated as colonies,which are difficult to count and plate accurately. The purpose of this study is to present an experimental method and analysis procedure to accomplish reliable screening of toxicants using hESC. Methods: We present a method developed to rapidly and easily determine the number of cells in small colonies of hESC spectrophotometerically and then accurately dispense equivalent numbers of cells in 96-well plates. The MTT assay was used to evaluate plating accuracy,and the method was tested using known toxicants. Results: The quality of the plate set-up and analysis procedure was evaluated with NIH plate validation and assessment software. All statistical parameters measured by the software were acceptable,and no drift or edge effects were observed. The 96-well plate MTT assay with hESC was tested by performing a dose-response screen of commercial products,which contain a variety of chemicals. The screen was done using single wells/dose,and the reliability of this method was demonstrated in a subsequent screen of the same products repeated three times. The single and triple screens were in good agreement,and NOAELs and IC50s could be determined from the single screen. The effects of vapor from volatile chemicals were studied,and methods to monitor and avoid vapor effects were incorporated into the assay. Discussion: Our method overcomes the difficulty of using hESC for reliable quantitative 96-well plate assays. It enables rapid dose-response screening using equipment that is commonly available in laboratories that culture hESC. This method could have a broad application in studies of environmental chemicals and drugs using hESC as models of prenatal development. ?? 2012 Elsevier Inc.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Su W et al. (JAN 2013)
1052 203--215
Bioluminescence Imaging of Human Embryonic Stem Cell-Derived Endothelial Cells for Treatment of Myocardial Infarction
Myocardial infarction is a leading cause of mortality and morbidity worldwide,and current treatments fail to address the underlying scarring and cell loss,which is a major cause of heart failure after infarction. The novel strategy,therapeutic angiogenesis and/or vasculogenesis with endothelial progenitor cells transplantation holds great promise to increase blood flow in ischemic areas,thus rebuild the injured heart and reverse the heart failure. Given the potential of self-renewal and differentiation into virtually all cell types,human embryonic stem cells (hESCs) may provide an alternate source of therapeutic cells by allowing the derivation of large numbers of endothelial cells for therapeutic angiogenesis and/or vasculogenesis of ischemic heart diseases. Moreover,to fully understand the fate of implanted hESCs or hESC derivatives,investigators need to monitor the motility of cells in living animals over time. In this chapter,we describe the application of bioluminescence reporter gene imaging to track the transplanted hESC-derived endothelial cells for treatment of myocardial infarction. The technology of inducing endothelial cells from hESCs will also be discussed.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
James D et al. (MAR 2005)
Development (Cambridge,England) 132 6 1273--82
TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.
Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers,yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development,we have examined the role of TGFbeta superfamily signaling in hESCs. We found that,in undifferentiated cells,the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation,SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling,which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly,we show that in ex vivo mouse blastocyst cultures,SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.
View Publication
产品类型:
产品号#:
72232
72234
产品名:
SB431542 (Hydrate)
SB431542(水合物)
Shi Y et al. (JUN 2008)
Cell stem cell 2 6 525--8
A combined chemical and genetic approach for the generation of induced pluripotent stem cells.
Anderson AE et al. (FEB 2009)
Journal of leukocyte biology 85 2 243--50
LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells.
Autoimmune pathologies are caused by a breakdown in self-tolerance. Tolerogenic dendritic cells (tolDC) are a promising immunotherapeutic tool for restoring self-tolerance in an antigen-specific manner. Studies about tolDC have focused largely on generating stable maturation-resistant DC,but few have fully addressed questions about the antigen-presenting and migratory capacities of these cells,prerequisites for successful immunotherapy. Here,we investigated whether human tolDC,generated with dexamethasone and the active form of vitamin D3,maintained their tolerogenic function upon activation with LPS (LPS-tolDC),while acquiring the ability to present exogenous autoantigen and to migrate in response to the CCR7 ligand CCL19. LPS activation led to important changes in the tolDC phenotype and function. LPS-tolDC,but not tolDC,expressed the chemokine receptor CCR7 and migrated in response to CCL19. Furthermore,LPS-tolDC were superior to tolDC in their ability to present type II collagen,a candidate autoantigen in rheumatoid arthritis. tolDC and LPS-tolDC had low stimulatory capacity for allogeneic,naïve T cells and skewed T cell polarization toward an anti-inflammatory phenotype,although LPS-tolDC induced significantly higher levels of IL-10 production by T cells. Our finding that LPS activation is essential for inducing migratory and antigen-presenting activity in tolDC is important for optimizing their therapeutic potential.
View Publication
产品类型:
产品号#:
18259
18259RF
产品名:
Kang L et al. ( 2013)
Frontiers in immunology 4 MAY 101
Characterization and ex vivo Expansion of Human Placenta-Derived Natural Killer Cells for Cancer Immunotherapy.
Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched,full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell,HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units,CD56+CD3- placenta-derived NK cells,termed pNK cells,were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were textgreater80% CD56+CD3-,comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D,NKp46,and NKp44 (p textless 0.001,p textless 0.001,and p textless 0.05,respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile,immunophenotype,and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development,pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.
View Publication
产品类型:
产品号#:
07900
19055
19055RF
产品名:
DNase I 溶液(1 mg/mL)
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
A. Renner et al. (Apr 2024)
Gene Therapy 31 7-8
Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells
Allogeneic cell therapies,such as those involving macrophages or Natural Killer (NK) cells,are of increasing interest for cancer immunotherapy. However,the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges,such as required cell pre-activation and inefficiency in transduction,which hinder the assessment of preclinical efficacy and clinical translation. In our study,we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein,which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors,this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood,as well as freshly obtained monocytes,which were differentiated to M1 macrophages as well as B cells from multiple donors,achieving up to 80% reporter gene expression within three days post-transduction. Importantly,KoRV-based transduction does not compromise the expression of crucial immune cell receptors,nor does it impair immune cell functionality,including NK cell viability,proliferation,cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion,our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics,requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics,expediting their availability to patients in need. Subject terms: Genetic transduction,Tumour immunology,Immunotherapy,Genetic vectors,Innate immune cells
View Publication