Nie S et al. (FEB 2015)
Journal of proteome research 14 2 814--22
Tenascin-C: a novel candidate marker for cancer stem cells in glioblastoma identified by tissue microarrays.
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor,with dismal survival outcomes. Recently,cancer stem cells (CSCs) have been demonstrated to play a role in therapeutic resistance and are considered to be the most likely cause of cancer relapse. The identification of CSCs is an important step toward finding new and effective ways to treat GBM. Tenascin-C (TNC) protein has been identified as a potential marker for CSCs in gliomas based on previous work. Here,we have investigated the expression of TNC in tissue microarrays including 17 GBMs,18 WHO grade III astrocytomas,15 WHO grade II astrocytomas,4 WHO grade I astrocytomas,and 7 normal brain tissue samples by immunohistochemical staining. TNC expression was found to be highly associated with the grade of astrocytoma. It has a high expression level in most of the grade III astrocytomas and GBMs analyzed and a very low expression in most grade II astrocytomas,whereas it is undetectable in grade I astrocytomas and normal brain tissues. Double-immunofluorescence staining for TNC and CD133 in GBM tissues revealed that there was a high overlap between theses two positive populations. The results were further confirmed by flow cytometry analysis of TNC and CD133 in GBM-derived stem-like neurospheres in vitro. A limiting dilution assay demonstrated that the sphere formation ability of CD133(+)/TNC(+) and CD133(-)/TNC(+) cell populations is much higher than that of the CD133(+)/TNC(-) and CD133(-)/TNC(-) populations. These results suggest that TNC is not only a potential prognostic marker for GBM but also a potential marker for glioma CSCs,where the TNC(+) population is identified as a CSC population overlapping with part of the CD133(-) cell population.
View Publication
产品类型:
产品号#:
05750
05751
05752
产品名:
NeuroCult™ NS-A 基础培养基(人)
NeuroCult™ NS-A 扩增试剂盒(人)
NeuroCult™ NS-A 分化试剂盒 (人)
Singh KP et al. (JAN 2009)
Carcinogenesis 30 1 11--9
Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells.
The aryl hydrocarbon receptor (AhR) mediates the carcinogenicity of a family of environmental contaminants,the most potent being 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increased incidence of lymphoma and leukemia in humans is associated with TCDD exposure. Although AhR activation by TCDD has profound effects on the immune system,precise cellular and molecular mechanisms have yet to be determined. These studies tested the hypothesis that alteration of marrow populations following treatment of mice with TCDD is due to an effect on hematopoietic stem cells (HSCs). Treatment with TCDD resulted in an increased number and proliferation of bone marrow (BM) populations enriched for HSCs. There was a time-dependent decrease in B-lineage cells with a concomitant increase in myeloid populations. The decrease in the B-cell lineage colony-forming unit-preB progenitors along with a transient increase in myeloid progenitors were consistent with a skewing of lineage development from lymphoid to myeloid populations. However,HSCs from TCDD-treated mice exhibited diminished capacity to reconstitute and home to marrow of irradiated recipients. AhR messenger RNA was expressed in progenitor subsets but is downregulated during HSC proliferation. This result was consistent with the lack of response following the exposure of 5-fluorouracil-treated mice to TCDD. The direct exposure of cultured BM cells to TCDD inhibited the growth of immature hematopoietic progenitor cells,but not more mature lineage-restricted progenitors. Overall,these data are consistent with the hypothesis that TCDD,through AhR activation,alters the ability of HSCs to respond appropriately to signals within the marrow microenvironment.
View Publication
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells.
AHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4(+)CD7(-) Sezary cells from patients with Sezary syndrome. Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1-mediated transformation,microarray analysis was performed to identify differentially expressed genes in AHI-1-suppressed CTCL cells. Fifteen up-regulated and 6 down-regulated genes were identified and confirmed by quantitative reverse transcription-polymerase chain reaction. Seven were further confirmed in a microarray analysis of CD4(+)CD7(-) Sezary cells from Sezary syndrome patients. HCK and BIN1 emerged as new candidate cooperative genes,with differential protein expression,which correlates with observed transcript changes. Interestingly,changes in HCK phosphorylation and biologic response to its inhibitor,dasatinib,were observed in AHI-1-suppressed or -overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells,which also exhibit differential MYC protein expression. In addition,aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1-mediated leukemic transformation of human CTCL cells.
View Publication
产品类型:
产品号#:
15021
15061
产品名:
RosetteSep™人T细胞富集抗体混合物
RosetteSep™人T细胞富集抗体混合物
FOLEY GE and EAGLE H (OCT 1958)
Cancer research 18 9 1011--6
The cytotoxicity of anti-tumor agents for normal human and animal cells in first tissue culture passage.
CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia.
OBJECTIVE: Bone marrow-derived mononuclear cells (BMCs) improve the functional recovery after ischemia. However,BMCs comprise a heterogeneous mixture of cells,and it is not known which cell types are responsible for the induction of neovascularization after cell therapy. Because cell recruitment is critically dependent on the expression of the SDF-1-receptor CXCR4,we examined whether the expression of CXCR4 may identify a therapeutically active population of BMCs. METHODS AND RESULTS: Human CXCR4(+) and CXCR4(-) BMCs were sorted by magnetic beads. CXCR4(+) BMCs showed a significantly higher invasion capacity under basal conditions and after SDF-1 stimulation. Hematopoietic or mesenchymal colony-forming capacity did not differ between CXCR4(+) and CXCR4(-) BMCs. Injection of CXCR4(+) BMCs in mice after induction of hindlimb ischemia significantly improved the recovery of perfusion compared to injection of CXCR4(-) BMCs. Likewise,capillary density was significantly increased in CXCR4(+) BMC-treated mice. Because part of the beneficial effects of cell therapy were attributed to the release of paracrine effectors,we analyzed BMC supernatants for secreted factors. Importantly,supernatants of CXCR4(+) BMCs were enriched in the proangiogenic cytokines HGF and PDGF-BB. CONCLUSIONS: CXCR4(+) BMCs exhibit an increased therapeutic potential for blood flow recovery after acute ischemia. Mechanistically,their higher migratory capacity and their increased release of paracrine factors may contribute to enhanced tissue repair.
View Publication
产品类型:
产品号#:
05401
05402
05411
84534
84544
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Yap LYW et al. (FEB 2011)
Tissue engineering. Part C,Methods 17 2 193--207
Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells.
Current methodology for pluripotent human embryonic stem cells (hESCs) expansion relies on murine sarcoma basement membrane substrates (Matrigel™),which precludes the use of these cells in regenerative medicine. To realize the clinical efficacy of hESCs and their derivatives,expansion of these cells in a defined system that is free of animal components is required. This study reports the successful propagation of hESCs (HES-3 and H1) for textgreater 20 passages on tissue culture-treated polystyrene plates,coated from 5 μg/mL of human plasma-purified vitronectin (VN) solution. Cells maintain expression of pluripotent markers Tra1-60 and OCT-4 and are karyotypically normal after 20 passages of continuous culture. In vitro and in vivo differentiation of hESC by embryoid body formation and teratoma yielded cells from the ecto-,endo-,and mesoderm lineages. VN immobilized on tissue culture polystyrene was characterized using a combination of X-ray photoemission spectroscopy,atomic force microscopy,and quantification of the VN surface density with a Bradford protein assay. Ponceau S staining was used to measure VN adsorption and desorption kinetics. Tuning the VN surface density,via the concentration of depositing solution,revealed a threshold surface density of 250 ng/cm²,which is required for hESCs attachment,proliferation,and differentiation. Cell attachment and proliferation assays on VN surface densities above this threshold show the substrate properties to be equally viable.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Want AJ et al. (JAN 2012)
Regenerative medicine 7 1 71--84
Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask.
Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential,culture processes must be standardized,scalable and able to produce clinically relevant cell numbers,whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations,referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture,which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture,which may provide a cost-effective platform for low-dose,low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Neff AT et al. (AUG 2012)
Genome research 22 8 1457--67
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells
Pluripotency is a unique state in which cells can self-renew indefinitely but also retain the ability to differentiate into other cell types upon receipt of extracellular cues. Although it is clear that stem cells have a distinct transcriptional program,little is known about how alterations in post-transcriptional mechanisms,such as mRNA turnover,contribute to the achievement and maintenance of pluripotency. Here we have assessed the rates of decay for the majority of mRNAs expressed in induced pluripotent stem (iPS) cells and the fully differentiated human foreskin fibroblasts (HFFs) they were derived from. Comparison of decay rates in the two cell types led to the discovery of three independent regulatory mechanisms that allow coordinated turnover of specific groups of mRNAs. One mechanism results in increased stability of many histone mRNAs in iPS cells. A second pathway stabilizes a large set of zinc finger protein mRNAs,potentially through reduced levels of miRNAs that target them. Finally,a group of transcripts bearing 3' UTR C-rich sequence elements,many of which encode transcription factors,are significantly less stable in iPS cells. Intriguingly,two poly(C)-binding proteins that recognize this type of element are reciprocally expressed in iPS and HFF cells. Overall,our results highlight the importance of post-transcriptional control in pluripotent cells and identify miRNAs and RNA-binding proteins whose activity may coordinately control expression of a wide range of genes in iPS cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jin S et al. ( 2012)
PLoS ONE 7 11 e50880
A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells.
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential,however,depends on the availability of culture methods that are robust,scalable,and use chemically defined materials. Despite significant advances in hiPSC technologies,the expansion of hiPSCs relies upon the use of animal-derived extracellular matrix extracts,such as Matrigel,which raises safety concerns over the use of these products. In this work,we investigated the feasibility of expanding and differentiating hiPSCs on a chemically defined,xeno-free synthetic peptide substrate,i.e. Corning Synthemax(®) Surface. We demonstrated that the Synthemax Surface supports the attachment,spreading,and proliferation of hiPSCs,as well as hiPSCs' lineage-specific differentiation. hiPSCs colonies grown on Synthemax Surfaces exhibit less spread and more compact morphology compared to cells grown on Matrigel™. The cytoskeleton characterization of hiPSCs grown on the Synthemax Surface revealed formation of denser actin filaments in the cell-cell interface. The down-regulation of vinculin and up-regulation of zyxin expression were also observed in hiPSCs grown on the Synthemax Surface. Further examination of cell-ECM interaction revealed that hiPSCs grown on the Synthemax Surface primarily utilize α(v)β(5) integrins to mediate attachment to the substrate,whereas multiple integrins are involved in cell attachment to Matrigel. Finally,hiPSCs can be maintained undifferentiated on the Synthemax Surface for more than ten passages. These studies provide a novel approach for expansion of hiPSCs using synthetic peptide engineered surface as a substrate to avoid a potential risk of contamination and lot-to-lot variability with animal derived materials.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
07930
07931
07940
07955
07956
07959
07954
85850
85857
85870
85875
产品名:
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
CryoStor® CS10
mTeSR™1
mTeSR™1
Elanzew A et al. (OCT 2015)
Biotechnology journal 10 10 1589--1599
A reproducible and versatile system for the dynamic expansion of human pluripotent stem cells in suspension.
Reprogramming of patient cells to human induced pluripotent stem cells (hiPSC) has facilitated in vitro disease modeling studies aiming at deciphering the molecular and cellular mechanisms that contribute to disease pathogenesis and progression. To fully exploit the potential of hiPSC for biomedical applications,technologies that enable the standardized generation and expansion of hiPSC from large numbers of donors are required. Paralleled automated processes for the expansion of hiPSC could provide an opportunity to maximize the generation of hiPSC collections from patient cohorts while minimizing hands-on time and costs. In order to develop a simple method for the parallel expansion of human pluripotent stem cells (hPSC) we established a protocol for their cultivation as undifferentiated aggregates in a bench-top bioreactor system (BioLevitator™). We show that long-term expansion (10 passages) of hPSCs either in mTeSR or E8 medium preserved a normal karyotype,three-germ-layer differentiation potential and high expression of pluripotency-associated markers. The system enables the expansion from low inoculation densities (0.3 × 10(5) cells/mL) and provides a simplified,cost-efficient and time-saving method for the provision of hiPSC at midi-scale. Implementation of this protocol in cell production schemes has the potential to advance cell manufacturing in many areas of hiPSC-based medical research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Zhang X et al. (JAN 2016)
Carbohydrate Polymers 136 1061--1064
Peptide-conjugated hyaluronic acid surface for the culture of human induced pluripotent stem cells under defined conditions
Hyaluronic acid (HA) has been cross-linked to form hydrogel for potential applications in the self-renewal and differentiation of human pluripotent stem cells (hPSCs) for years. However,HA hydrogel with improved residence time and mechanical integrity that allows the survival of hPSCs under defined conditions is still much needed for clinical applications. In this study,HA was modified with methacrylate functional groups (MeHA) and cross-linked by photo-crosslinking method. After subsequent conjugation with adhesive peptide,these MeHA surfaces demonstrated performance in facilitating human induced pluripotent stem cells (hiPSCs) proliferation,and good pluripotency maintenance of hiPSCs under defined conditions. Moreover,MeHA films on glass-slides exhibited long residence time and mechanical stability throughout hiPSC culture. Our photo-crosslinkable MeHA possesses great value in accelerating the application of HA hydrogel in hiPSCs proliferation and differentiation with the conjugation of adhesive peptides.
View Publication