H. Kearney et al. (Sep 2025)
Stem Cell Reviews and Reports 21 8
Dimethyl Sulfoxide Conditions Induced Pluripotent Stem Cells for more Efficient Nephron Progenitor and Kidney Organoid Differentiation
The field of human induced pluripotent stem cells (hiPSCs) has seen significant progress since the discovery of reprogramming somatic cells using the transcription factors Oct4,Sox2,Klf4,and c-Myc. hiPSCs are similar to embryonic stem cells in a primed state of pluripotency and have the potential to differentiate into any adult human cell type,offering a versatile tool for research and potential therapeutic applications. However,the efficiency of differentiation protocols for generating complex structures with multiple cell types,Like kidney organoids,remains a challenge. This study investigates the impact of treating hiPSCs with a low-dose dimethyl sulfoxide to enhance kidney organoid differentiation using the stepwise 2D monolayer-based protocol developed by Morizane et al. 2017. We found that treating hiPSCs with 1–2% DMSO affects gene expression of pluripotent transcription factors,the epigenetic landscape,and hiPSC colony morphology. Our findings also suggest DMSO treatment enhances the expression of the key metanephric mesenchyme nephron progenitor marker,SIX2 after 9 days of kidney organoid differentiation and helps improve hiPSC differentiation protocol efficiency toward the development of tubular kidney organoids. Further research is needed to fully elucidate the mechanisms underlying these effects and refine the differentiation process for potential in vitro research applications in biomedical research and drug development.Graphical Abstract
Supplementary InformationThe online version contains supplementary material available at 10.1007/s12015-025-10971-z.
View Publication
产品类型:
产品号#:
100-0276
100-1130
产品名:
mTeSR™ Plus
mTeSR™ Plus
Perry BC et al. (JUN 2008)
Tissue engineering. Part C,Methods 14 2 149--56
Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use.
Recent studies have shown that mesenchymal stem cells (MSC) with the potential for cell-mediated therapies and tissue engineering applications can be isolated from extracted dental tissues. Here,we investigated the collection,processing,and cryobiological characteristics of MSC from human teeth processed under current good tissue practices (cGTP). Viable dental pulp-derived MSC (DPSC) cultures were isolated from 31 of 40 teeth examined. Of eight DPSC cultures examined more thoroughly,all expressed appropriate cell surface markers and underwent osteogenic,adipogenic,and chondrogenic differentiation in appropriate differentiation medium,thus meeting criteria to be called MSC. Viable DPSC were obtained up to 120 h postextraction. Efficient recovery of DPSC from cryopreserved intact teeth and second-passage DPSC cultures was achieved. These studies indicate that DPSC isolation is feasible for at least 5 days after tooth extraction,and imply that processing immediately after extraction may not be required for successful banking of DPSC. Further,the recovery of viable DPSC after cryopreservation of intact teeth suggests that minimal processing may be needed for the banking of samples with no immediate plans for expansion and use. These initial studies will facilitate the development of future cGTP protocols for the clinical banking of MSC.
View Publication
产品类型:
产品号#:
05401
05402
05404
05411
产品名:
MesenCult™ MSC基础培养基 (人)
MesenCult™ MSC 刺激补充剂(人)
MesenCult™ 增殖试剂盒(人)
Li T et al. (FEB 2010)
Laboratory investigation; a journal of technical methods and pathology 90 2 234--44
ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome.
Prostate cancer (PCa) contains a small population of cancer stem cells (CSCs) that contribute to its initiation and progression. The development of specific markers for identification of the CSCs may lead to new diagnostic strategies of PCa. Increased aldehyde dehydrogenase 1A1 (ALDH1A1) activity has been found in the stem cell populations of leukemia and some solid tumors. The aim of the study was to investigate the stem-cell-related function and clinical significance of the ALDH1A1 in human PCa. ALDEFLUOR assay was used to isolate ALDH1A1(+) cells from PCa cell lines. Stem cell characteristics of the ALDH1A1(+) cells were then investigated by in vitro and in vivo approaches. The ALDH1A1 expression was also analyzed by immunohistochemistry in 18 normal prostate and 163 PCa tissues. The ALDH1A1(+) PCa cells showed high clonogenic and tumorigenic capacities,and serially reinitiated transplantable tumors that resembled histopathologic characteristics and heterogeneity of the parental PCa cells in mice. Immunohistochemical analysis of human prostate tissues showed that ALDH1A1(+) cells were sparse and limited to the basal component in normal prostates. However,in tumor specimens,increased ALDH1A1 immunopositivity was found not only in secretory type cancer epithelial cells but also in neuroendocrine tumor populations. Furthermore,the high ALDH1A1 expression in PCa was positively correlated with Gleason score (P=0.01) and pathologic stage (P=0.01),and inversely associated with overall survival and cancer-specific survival of the patients (P=0.00093 and 0.00017,respectively). ALDH1A1 could be a prostate CSC-related marker. Measuring its expression might provide a potential approach to study tumorigenesis of PCa and predict outcome of the disease.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Li Z et al. (JAN 2009)
PLoS ONE 4 12 e8443
Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction
BACKGROUND: Differentiation of human embryonic stem cells into endothelial cells (hESC-ECs) has the potential to provide an unlimited source of cells for novel transplantation therapies of ischemic diseases by supporting angiogenesis and vasculogenesis. However,the endothelial differentiation efficiency of the conventional embryoid body (EB) method is low while the 2-dimensional method of co-culturing with mouse embryonic fibroblasts (MEFs) require animal product,both of which can limit the future clinical application of hESC-ECs. Moreover,to fully understand the beneficial effects of stem cell therapy,investigators must be able to track the functional biology and physiology of transplanted cells in living subjects over time. METHODOLOGY: In this study,we developed an extracellular matrix (ECM) culture system for increasing endothelial differentiation and free from contaminating animal cells. We investigated the transcriptional changes that occur during endothelial differentiation of hESCs using whole genome microarray,and compared to human umbilical vein endothelial cells (HUVECs). We also showed functional vascular formation by hESC-ECs in a mouse dorsal window model. Moreover,our study is the first so far to transplant hESC-ECs in a myocardial infarction model and monitor cell fate using molecular imaging methods. CONCLUSION: Taken together,we report a more efficient method for derivation of hESC-ECs that express appropriate patterns of endothelial genes,form functional vessels in vivo,and improve cardiac function. These studies suggest that hESC-ECs may provide a novel therapy for ischemic heart disease in the future.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
09500
85850
85857
85870
85875
产品名:
BIT 9500血清替代物
mTeSR™1
mTeSR™1
Nagano M et al. (AUG 2010)
Stem cells and development 19 8 1195--210
Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair.
Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic,adipogenic,and chondrogenic differentiation properties retrospectively. Here,we report 2 subpopulations of MSCs,separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs,with the upregulation of Flt-1,CXCR4,and Angiopoietin-2. Thus,MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.
View Publication
产品类型:
产品号#:
01700
01705
01701
01702
产品名:
ALDEFLUOR™ 试剂盒
ALDEFLUOR™ DEAB试剂
ALDEFLUOR™测定缓冲液
Kamei K-i et al. (MAY 2010)
Lab on a chip 10 9 1113--9
Microfluidic image cytometry for quantitative single-cell profiling of human pluripotent stem cells in chemically defined conditions.
Microfluidic image cytometry (MIC) has been developed to study phenotypes of various hPSC lines by screening several chemically defined serum/feeder-free conditions. A chemically defined hPSC culture was established using 20 ng mL(-1) of bFGF on 20 microg mL(-1) of Matrigel to grow hPSCs over a week in an undifferentiated state. Following hPSC culture,we conducted quantitative MIC to perform a single cell profiling of simultaneously detected protein expression (OCT4 and SSEA1). Using clustering analysis,we were able to systematically compare the characteristics of various hPSC lines in different conditions.
View Publication
A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells.
New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4(+) T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs). Here,we adapted this methodology to a high-throughput platform for the efficient,arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner,whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously,enabling studies of interactions among multiple host and viral factors. Finally,in an arrayed screen of 45 genes associated with HIV integrase,we identified several candidate dependency/restriction factors,demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.
View Publication
产品类型:
产品号#:
19052
19052RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
(Dec 2024)
Stem Cell Research & Therapy 15 14
Dynamic three dimensional environment for efficient and large scale generation of smooth muscle cells from hiPSCs
BackgroundChronic ischemic limb disease often leads to amputation,which remains a significant clinical problem. Smooth-muscle cells (SMCs) are crucially involved in the development and progression of many cardiovascular diseases,but studies with primary human SMCs have been limited by a lack of availability. Here,we evaluated the efficiency of two novel protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into SMCs and assessed their potency for the treatment of ischemic limb disease.MethodshiPSCs were differentiated into SMCs via a conventional two-dimensional (2D) protocol that was conducted entirely with cell monolayers,or via two protocols that consisted of an initial five-day three-dimensional (3D) spheroid phase followed by a six-day 2D monolayer phase (3D?+?2D differentiation). The 3D phases were conducted in shaker flasks on an orbital shaker (the 3D?+?2D shaker protocol) or in a PBS bioreactor (the 3D?+?2D bioreactor protocol). Differentiation efficiency was evaluated via the expression of SMC markers (smooth-muscle actin [SMA],smooth muscle protein 22 [SM22],and Calponin-1),and the biological activity of the differentiated hiPSC-SMCs was evaluated via in-vitro assessments of migration (scratch assay),contraction in response to the treatment with a prostaglandin H2 analog (U46619),and tube formation on Geltrex,as well as in-vivo measurements of perfusion (fluorescence angiography) and vessel density in the limbs of mice that were treated with hiPSC-SMCs after experimentally induced hind-limb ischemia (HLI).ResultsBoth 3D?+?2D protocols yielded?>?5.6?×?107 hiPSC-SMCs/differentiation,which was?~?nine-fold more than that produced via 2D differentiation,and flow cytometry analyses confirmed that?>?98% of the 3D?+?2D-differentiated hiPSC-SMCs expressed SMA,?>?81% expressed SM22,and?>?89% expressed Calponin-1. hiPSC-SMCs obtained via the 3D?+?2D shaker protocol also displayed typical SMC-like migratory,contraction,and tube-formation activity in-vitro and significantly improved measurements of perfusion,vessel density,and SMA-positive arterial density in the ischemic limb of mouse HLI model.ConclusionsOur dynamic 3D?+?2D protocols produced an exceptionally high yield of hiPSC-SMCs. Transplantation of these hiPSC-SMCs results in significantly improved recovery of ischemic limb after ischemic injury in mice.
View Publication
产品类型:
产品号#:
100-0276
100-1130
05990
产品名:
mTeSR™ Plus
mTeSR™ Plus
TeSR™-E8™
Fitzgerald DP et al. (OCT 2006)
Neuroscience 142 3 703--16
Characterization of neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain.
Many studies have demonstrated a role for netrin-1-deleted in colorectal cancer (DCC) interactions in both axon guidance and neuronal migration. Neogenin,a member of the DCC receptor family,has recently been shown to be a chemorepulsive axon guidance receptor for the repulsive guidance molecule (RGM) family of guidance cues [Rajagopalan S,Deitinghoff L,Davis D,Conrad S,Skutella T,Chedotal A,Mueller B,Strittmatter S (2004) Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol 6:755-762]. Here we show that neogenin is present on neural progenitors,including neurogenic radial glia,in the embryonic mouse forebrain suggesting that neogenin expression is a hallmark of neural progenitor populations. Neogenin-positive progenitors were isolated from embryonic day 14.5 forebrain using flow cytometry and cultured as neurospheres. Neogenin-positive progenitors gave rise to neurospheres displaying a high proliferative and neurogenic potential. In contrast,neogenin-negative forebrain cells did not produce long-term neurosphere cultures and did not possess a significant neurogenic potential. These observations argue strongly for a role for neogenin in neural progenitor biology. In addition,we also observed neogenin on parvalbumin- and calbindin-positive interneuron neuroblasts that were migrating through the medial and lateral ganglionic eminences,suggesting a role for neogenin in tangential migration. Therefore,neogenin may be a multi-functional receptor regulating both progenitor activity and neuroblast migration in the embryonic forebrain.
View Publication
产品类型:
产品号#:
05701
产品名:
NeuroCult™ 扩增添加物 (小鼠&大鼠)
A. Goral et al. ( 2022)
Frontiers in immunology 13 781364
A Specific CD44lo CD25lo Subpopulation of Regulatory T Cells Inhibits Anti-Leukemic Immune Response and Promotes the Progression in a Mouse Model of Chronic Lymphocytic Leukemia.
Regulatory T cells (Tregs) are capable of inhibiting the proliferation,activation and function of T cells and play an important role in impeding the immune response to cancer. In chronic lymphocytic leukemia (CLL) a dysfunctional immune response and elevated percentage of effector-like phenotype Tregs have been described. In this study,using the Eµ-TCL1 mouse model of CLL,we evaluated the changes in the Tregs phenotype and their expansion at different stages of leukemia progression. Importantly,we show that Tregs depletion in DEREG mice triggered the expansion of new anti-leukemic cytotoxic T cell clones leading to leukemia eradication. In TCL1 leukemia-bearing mice we identified and characterized a specific Tregs subpopulation,the phenotype of which suggests its role in the formation of an immunosuppressive microenvironment,supportive for leukemia survival and proliferation. This observation was also confirmed by the gene expression profile analysis of these TCL1-specific Tregs. The obtained data on Tregs are consistent with those described so far,however,above all show that the changes in the Tregs phenotype described in CLL result from the formation of a specific,described in this study Tregs subpopulation. In addition,functional tests revealed the ability of Tregs to inhibit T cells that recognize model antigens expressed by leukemic cells. Moreover,inhibition of Tregs with a MALT1 inhibitor provided a therapeutic benefit,both as monotherapy and also when combined with an immune checkpoint inhibitor. Altogether,activation of Tregs appears to be crucial for CLL progression.
View Publication
产品类型:
产品号#:
19852
19853
19854
产品名:
EasySep™小鼠CD4+ T细胞分选试剂盒
EasySep™小鼠CD8+ T细胞分选试剂盒
EasySep™小鼠B细胞分选试剂盒
Yang L et al. (FEB 2009)
Biotechnology and bioengineering 102 2 521--34
Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells.
The optimization of a purely negative depletion,enrichment process for circulating tumor cells (CTCs) in the peripheral blood of head and neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling,and subsequent depletion,of CD45 positive cells. A number of relevant variables are quantified,or attempted to be quantified,which control the performance of the enrichment process. Six different immunomagnetic labeling combinations were evaluated as well as the significant difference in performance with respect to the blood source: buffy coats purchased from the Red Cross,fresh,peripheral blood from normal donors,and fresh peripheral blood from human cancer patients. After optimization,the process is able to reduce the number of normal blood cells in a cancer patient's blood from 4.05 x 10(9) to 8.04 x 10(3) cells/mL and still recover,on average,2.32 CTC per mL of blood. For all of the cancer patient blood samples tested in which CTC were detected (20 out of 26 patients) the average recovery of CTCs was 21.7 per mL of blood,with a range of 282 to 0.53 CTC. Since the initial number of CTC in a patient's blood is unknown,and most probably varies from patient to patient,the recovery of the CTC is unknown. However,spiking studies of a cancer cell line into normal blood,and subsequent enrichment using the optimized protocol indicated an average recovery of approximately 83%. Unlike a majority of other published studies,this study focused on quantifying as many factors as possible to facilitate both the optimization of the process as well as provide information for current and future performance comparisons. The authors are not aware any other reported study which has achieved the performance reported here (a 5.66 log(10)) in a purely negative enrichment mode of operation. Such a mode of operation of an enrichment process provides significant flexibility in that it has no bias with respect to what attributes define a CTC; thereby allowing the researcher or clinician to use any maker they choose to define whether the final,enrich product contains CTCs or other cell type relevant to the specific question (i.e.,does the CTC have predominantly epithelial or mesenchymal characteristics?).
View Publication
产品类型:
产品号#:
18259
18259RF
产品名:
Peters DT et al. (MAY 2016)
Development (Cambridge,England) 143 9 1475--81
Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.
Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro,but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal,we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray,and tested their ability to perform mature hepatocyte functions (albumin and urea secretion,cytochrome activity). By these measures,ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation.
View Publication