Trotta R et al. (SEP 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 6 3784--92
TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells.
TGF-beta can be a potent suppressor of lymphocyte effector cell functions and can mediate these effects via distinct molecular pathways. The role of TGF-beta in regulating CD16-mediated NK cell IFN-gamma production and antibody-dependent cellular cytotoxicity (ADCC) is unclear,as are the signaling pathways that may be utilized. Treatment of primary human NK cells with TGF-beta inhibited IFN-gamma production induced by CD16 activation with or without IL-12 or IL-2,and it did so without affecting the phosphorylation/activation of MAP kinases ERK and p38,as well as STAT4. TGF-beta treatment induced SMAD3 phosphorylation,and ectopic overexpression of SMAD3 resulted in a significant decrease in IFN-gamma gene expression following CD16 activation with or without IL-12 or IL-2. Likewise,NK cells obtained from smad3(-/-) mice produced more IFN-gamma in response to CD16 activation plus IL-12 when compared with NK cells obtained from wild-type mice. Coactivation of human NK cells via CD16 and IL-12 induced expression of T-BET,the positive regulator of IFN-gamma,and T-BET was suppressed by TGF-beta and by SMAD3 overexpression. An extended treatment of primary NK cells with TGF-beta was required to inhibit ADCC,and it did so by inhibiting granzyme A and granzyme B expression. This effect was accentuated in cells overexpressing SMAD3. Collectively,our results indicate that TGF-beta inhibits CD16-mediated human NK cell IFN-gamma production and ADCC,and these effects are mediated via SMAD3.
View Publication
产品类型:
产品号#:
15025
15065
产品名:
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Yang S-L et al. (DEC 2012)
Protein & cell 3 12 934--942
Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis.
Articular cartilage,which is mainly composed of collagen II,enables smooth skeletal movement. Degeneration of collagen II can be caused by various events,such as injury,but degeneration especially increases over the course of normal aging. Unfortunately,the body does not fully repair itself from this type of degeneration,resulting in impaired movement. Microfracture,an articular cartilage repair surgical technique,has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However,the therapeutic outcomes of all these techniques vary in different patients depending on their age,health,lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage,both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone,or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs),which are able to self-renew and differentiate into multiple cell types,provides a potentially valuable cell resource for drug screening in a more relevant" cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis."
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Xiao X et al. (JUL 2016)
mAbs 8 5 916--27
A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells.
Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here,memory B cells are activated and amplified using Epstein-Barr virus infection,co-cultured with CHO-muCD40L cells,and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells,and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly,our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family,influenza A neutralizing antibodies,contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool.
View Publication
产品类型:
产品号#:
19674
19674RF
产品名:
EasySep™ Direct人B细胞分选试剂盒
RoboSep™ Direct人B细胞分选试剂盒
(Mar 2025)
Journal of Extracellular Vesicles 14 4
MFGE?8, a Corona Protein on Extracellular Vesicles, Mediates Self?Renewal and Survival of Human Pluripotent Stem Cells
ABSTRACTExtracellular vesicles (EVs) and secretory factors play crucial roles in intercellular communication,but the molecular mechanisms and dynamics governing their interplay in human pluripotent stem cells (hPSCs) are poorly understood. Here,we demonstrate that hPSC?secreted milk fat globule?EGF factor 8 (MFGE?8) is the principal corona protein at the periphery of EVs,playing an essential role in controlling hPSC stemness. MFGE?8 depletion reduced EV?mediated self?renewal and survival in hPSC cultures. MFGE?8 in the EV corona bound to integrin ?v?5 expressed in the peripheral zone of hPSC colonies. It activated cyclin D1 and dynamin?1 via the AKT/GSK3? axis,promoting the growth of hPSCs and facilitating the endocytosis of EVs. Internalization of EVs alleviated oxidative stress and cell death by transporting redox and stress response proteins that increased GSH levels. Our findings demonstrate the critical role of the extracellular association of MFGE?8 and EVs in modulating the self?renewal and survival of hPSCs.
View Publication
Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations.
The cellular reservoir for latent human cytomegalovirus (HCMV) in the hematopoietic compartment,and the mechanisms governing a latent infection and reactivation from latency are unknown. Previous work has demonstrated that HCMV infects CD34+ progenitors and expresses a limited subset of viral genes. The outcome of HCMV infection may depend on the cell subpopulations infected within the heterogeneous CD34+ compartment. We compared HCMV infection in well-defined CD34+ cell subpopulations. HCMV infection inhibited hematopoietic colony formation from CD34+/CD38- but not CD34+/c-kit+ cells. CD34+/CD38- cells transiently expressed a large subset of HCMV genes that were not expressed in CD34+/c-kit+ cells or cells expressing more mature cell surface phenotypes. Although viral genomes were present in infected cells,viral gene expression was undetectable by 10 days after infection. Importantly,viral replication could be reactivated by coculture with permissive fibroblasts only from the CD34+/CD38- population. Strikingly,a subpopulation of CD34+/CD38- cells expressing a stem cell phenotype (lineage-/Thy-1+) supported a productive HCMV infection. These studies demonstrate that the outcome of HCMV infection in the hematopoietic compartment is dependent on the nature of the cell subpopulations infected and that CD34+/CD38- cells support an HCMV infection with the hallmarks of latency.
View Publication
产品类型:
产品号#:
09500
84435
84445
产品名:
BIT 9500血清替代物
Phanstiel D et al. (MAR 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 11 4093--8
Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells.
Epigenetic regulation through chromatin is thought to play a critical role in the establishment and maintenance of pluripotency. Traditionally,antibody-based technologies were used to probe for specific posttranslational modifications (PTMs) present on histone tails,but these methods do not generally reveal the presence of multiple modifications on a single-histone tail (combinatorial codes). Here,we describe technology for the discovery and quantification of histone combinatorial codes that is based on chromatography and mass spectrometry. We applied this methodology to decipher 74 discrete combinatorial codes on the tail of histone H4 from human embryonic stem (ES) cells. Finally,we quantified the abundances of these codes as human ES cells undergo differentiation to reveal striking changes in methylation and acetylation patterns. For example,H4R3 methylation was observed only in the presence of H4K20 dimethylation; such context-specific patterning exemplifies the power of this technique.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
(Oct 2024)
eBioMedicine 109 1
Homology-independent targeted insertion-mediated derivation of M1-biased macrophages harbouring Megf10 and CD3? from human pluripotent stem cells
SummaryBackgroundMacrophages engineered with chimeric antigen receptors (CAR) are suitable for immunotherapy based on their immunomodulatory activity and ability to infiltrate solid tumours. However,the production and application of genetically edited,highly effective,and mass-produced CAR-modified macrophages (CAR-Ms) are challenging.MethodsHere,we used homology-independent targeted insertion (HITI) for site-directed CAR integration into the safe-harbour region of human pluripotent stem cells (hPSCs). This approach,together with a simple differentiation protocol,produced stable and highly effective CAR-Ms without heterogeneity.FindingsThese engineered cells phagocytosed cancer cells,leading to significant inhibition of cancer-cell proliferation in vitro and in vivo. Furthermore,the engineered CARs,which incorporated a combination of CD3? and Megf10 (referred to as FRP5M?),markedly enhanced the antitumour effect of CAR-Ms by promoting M1,but not M2,polarisation. FRP5M? promoted M1 polarisation via nuclear factor kappa B (NF-?B),ERK,and STAT1 signalling,and concurrently inhibited STAT3 signalling even under M2 conditions. These features of CAR-Ms modulated the tumour microenvironment by activating inflammatory signalling,inducing M1 polarisation of bystander non-CAR macrophages,and enhancing the infiltration of T cells in cancer spheroids.InterpretationOur findings suggest that CAR-Ms have promise as immunotherapeutics. In conclusion,the guided insertion of CAR containing CD3? and Megf10 domains is an effective strategy for the immunotherapy of solid tumours.FundingThis work was supported by KRIBB Research Initiative Program Grant (KGM4562431,KGM5282423) and a Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (Ministry of Science and ICT,10.13039/501100003625Ministry of Health and Welfare) (22A0304L1-01).
View Publication
Li Calzi S et al. (SEP 2008)
Diabetes 57 9 2488--94
Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: evidence for blunted responsiveness in diabetes.
OBJECTIVE: We examined the effect of the vasoactive agents carbon monoxide (CO) and nitric oxide (NO) : n the phosphorylation and intracellular redistribution of vasodilator-stimulated phosphoprotein (VASP),a critical actin motor protein required for cell migration that also controls vasodilation and platelet aggregation. RESEARCH DESIGN AND METHODS: We examined the effect of donor-released CO and NO in endothelial progenitor cells (EPCs) and platelets from nondiabetic and diabetic subjects and in human microvascular endothelial cells (HMECs) cultured under low (5.5 mmol/l) or high (25 mmol/l) glucose conditions. VASP phosphorylation was evaluated using phosphorylation site-specific antibodies. RESULTS: In control platelets,CO selectively promotes phosphorylation at VASP Ser-157,whereas NO promotes phosphorylation primarily at Ser-157 and also at Ser-239,with maximal responses at 1 min with both agents on Ser-157 and at 15 min on Ser-239 with NO treatment. In diabetic platelets,neither agent resulted in VASP phosphorylation. In nondiabetic EPCs,NO and CO increased phosphorylation at Ser-239 and Ser-157,respectively,but this response was markedly reduced in diabetic EPCs. In endothelial cells cultured under low glucose conditions,both CO and NO induced phosphorylation at Ser-157 and Ser-239; however,this response was completely lost when cells were cultured under high glucose conditions. In control EPCs and in HMECs exposed to low glucose,VASP was redistributed to filopodia-like structures following CO or NO exposure; however,redistribution was dramatically attenuated under high glucose conditions. CONCLUSIONS: Vasoactive gases CO and NO promote cytoskeletal changes through site- and cell type-specific VASP phosphorylation,and in diabetes,blunted responses to these agents may lead to reduced vascular repair and tissue perfusion.
View Publication