Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer.
Numerous factors that can influence the proliferation and differentiation in vitro of cells at various stages of hematopoiesis have been identified,but the mechanisms used by stromal cells to regulate the cycling status of the most primitive human hematopoietic cells are still poorly understood. Previous studies of long-term cultures (LTC) of human marrow have suggested that cytokine-induced variations in stromal cell production of one or more stimulators and inhibitors of hematopoiesis may be important. To identify the specific regulators involved,we performed Northern analyses on RNA extracted from human marrow LTC adherent layers,or stromal cell types derived from or related to those present in the adherent layer. These analyses showed marked increases in interleukin-1 beta (IL-1 beta),IL-6,and granulocyte colony-stimulating factor (G-CSF) mRNA levels within 8 hours after treatments that lead to the activation within 2 days of primitive hematopoietic progenitors in such cultures. Increases in granulocyte-macrophage (GM)-CSF and M-CSF mRNA were also sometimes seen. Bioassays using cell lines responsive to G-CSF,GM-CSF,and IL-6 showed significant elevation in growth factor levels 24 hours after IL-1 beta stimulation. Neither IL-3 nor IL-4 mRNA was detectable at any time. In contrast,transforming growth factor-beta (TGF-beta) mRNA and nanogram levels of TGF-beta bioactivity in the medium were detected at all times in established LTC,and these levels were not consistently altered by any of the manipulations that stimulated hematopoietic growth factor production and primitive progenitor cycling. We also found that addition of anti-TGF-beta antibody could prolong or reactivate primitive progenitor proliferation when added to previously stimulated or quiescent cultures,respectively. Together,these results indicate a dominant negative regulatory role of endogenously produced TGF-beta in unperturbed LTC,with activation of primitive hematopoietic cells being achieved by mechanisms that stimulate stromal cells to produce G-CSF,GM-CSF,and IL-6. Given the similarities between the LTC system and the marrow microenvironment,it seems likely that the control of human stem cell activation in vivo may involve similar variations in the production of these factors by stromal cells.
View Publication
Chen X et al. (JUL 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 27 10346--51
CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells.
Activation of natural killer (NK) cell cytotoxicity requires adhesion and formation of a conjugate with a susceptible target cell,followed by actin polymerization,and polarization of the microtubule organizing center (MTOC) and cytolytic granules to the NK cell immune synapse. Here,by using the YTS NK cell line as a model,CD28 is shown to be an activating receptor. It signals cytotoxicity in a process dependent on phosphoinositide-3 kinase activation,leading to sustained extracellular signal-regulated kinase 2 (ERK2) phosphorylation. ERK and phospho-ERK localize to microtubule filaments. Neither conjugation with targets nor actin polymerization is affected by blocking ERK2 activation. However,both polarization of the MTOC and cytolytic granules to the synaptic region and NK cell cytotoxicity are strongly reduced by blocking ERK2 activation. A role for the CD28/CD80 interaction in cytotoxicity of human peripheral NK cells also was established. By contrast,lymphocyte function-associated antigen 1 (LFA-1) ligation transduces only a transient ERK2 activation and fails to induce killing in YTS cells. Thus,in YTS cells,a CD28 signal is used to polarize the MTOC and cytolytic granules to the NK cell immune synapse by stimulating sustained ERK2 activation.
View Publication
产品类型:
产品号#:
05150
15025
15065
产品名:
MyeloCult™H5100
RosetteSep™人NK细胞富集抗体混合物
RosetteSep™人NK细胞富集抗体混合物
Zhu Y et al. (JAN 2013)
PLoS ONE 8 1 e54552
Three-Dimensional Neuroepithelial Culture from Human Embryonic Stem Cells and Its Use for Quantitative Conversion to Retinal Pigment Epithelium
A goal in human embryonic stem cell (hESC) research is the faithful differentiation to given cell types such as neural lineages. During embryonic development,a basement membrane surrounds the neural plate that forms a tight,apico-basolaterally polarized epithelium before closing to form a neural tube with a single lumen. Here we show that the three-dimensional epithelial cyst culture of hESCs in Matrigel combined with neural induction results in a quantitative conversion into neuroepithelial cysts containing a single lumen. Cells attain a defined neuroepithelial identity by 5 days. The neuroepithelial cysts naturally generate retinal epithelium,in part due to IGF-1/insulin signaling. We demonstrate the utility of this epithelial culture approach by achieving a quantitative production of retinal pigment epithelial (RPE) cells from hESCs within 30 days. Direct transplantation of this RPE into a rat model of retinal degeneration without any selection or expansion of the cells results in the formation of a donor-derived RPE monolayer that rescues photoreceptor cells. The cyst method for neuroepithelial differentiation of pluripotent stem cells is not only of importance for RPE generation but will also be relevant to the production of other neuronal cell types and for reconstituting complex patterning events from three-dimensional neuroepithelia.
View Publication
Sebaa M et al. (JAN 2015)
Journal of Biomedical Materials Research - Part A 103 1 25--37
The effects of poly(3,4-ethylenedioxythiophene) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications
Magnesium (Mg) is a promising conductive metallic biomaterial due to its desirable mechanical properties for load bearing and biodegradability in human body. Controlling the rapid degradation of Mg in physiological environment continues to be the key challenge toward clinical translation. In this study,we investigated the effects of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the degradation behavior of Mg substrates and their cytocompatibility. Human embryonic stem cells (hESCs) were used as the in vitro model system to study cellular responses to Mg degradation because they are sensitive and can potentially differentiate into many cell types of interest (e.g.,neurons) for regenerative medicine. The PEDOT was deposited on Mg substrates using electrochemical deposition. The greater number of cyclic voltammetry (CV) cycles yielded thicker PEDOT coatings on Mg substrates. Specifically,the coatings produced by 2,5,and 10 CV cycles (denoted as 2×-PEDOT-Mg,5×-PEDOT-Mg,and 10×-PEDOT-Mg) had an average thickness of 31,63,and 78 µm,respectively. Compared with non-coated Mg samples,all PEDOT coated Mg samples showed slower degradation rates,as indicated by Tafel test results and Mg ion concentrations in the post-culture media. The 5×-PEDOT-Mg showed the best coating adhesion and slowest Mg degradation among the tested samples. Moreover,hESCs survived for the longest period when cultured with the 5×-PEDOT-Mg samples compared with the non-coated Mg and 2×-PEDOT-Mg. Overall,the results of this study showed promise in using PEDOT coating on biodegradable Mg-based implants for potential neural recording,stimulation and tissue engineering applications,thus encouraging further research.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
He W et al. (SEP 2014)
PLoS ONE 9 9 e108350
Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray
BACKGROUND: Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells,such as embryonic stem cells and induced pluripotent stem cells,appear to have a hypermethylated status compared with differentiated cells. However,the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally,differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.backslashnbackslashnMETHODOLOGY: Here,we determined the DNA methylation profiles of 10 human cell lines,including 2 ESC lines,4 virally derived iPSC lines,2 episomally derived iPSC lines,and the 2 parental cell lines from which the iPSCs were derived using Illumina's Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness,whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.backslashnbackslashnCONCLUSIONS: This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods,the corresponding somatic cells,and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Jin S et al. (JUN 2016)
Stem Cells
A Novel Role for miR-1305 in Regulation of Pluripotency-Differentiation Balance, Cell Cycle, and Apoptosis in Human Pluripotent Stem Cells
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are defined as pluripotent in view of their self-renewal ability and potential to differentiate to cells of all three germ layers. Recent studies have indicated that microRNAs (miRNAs) play an important role in the maintenance of pluripotency and cell cycle regulation. We used a microarray based approach to identify miRNAs that were enriched in hESCs when compared to differentiated cells and at the same time showed significant expression changes between different phases of cell cycle. We identified 34 candidate miRNAs and performed functional studies on one of these,miR-1305,which showed the highest expression change during cell cycle transition. Overexpression of miR-1305 induced differentiation of pluripotent stem cells,increased cell apoptosis and sped up G1/S transition,while its downregulation facilitated the maintenance of pluripotency and increased cell survival. Using target prediction software and luciferase based reporter assays we identified POLR3G as a downstream target by which miR-1305 regulates the fine balance between maintenance of pluripotency and onset of differentiation. Overexpression of POLR3G rescued pluripotent stem cell differentiation induced by miR-1305 overexpression. In contrast,knock-down of POLR3G expression abolished the miR-1305-knockdown mediated enhancement of pluripotency,thus validating its role as miR-1305 target in human pluripotent stem cells. Together our data point to an important role for miR-1305 as a novel regulator of pluripotency,cell survival and cell cycle and uncovers new mechanisms and networks by which these processes are intertwined in human pluripotent stem cells. This article is protected by copyright. All rights reserved.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
K. Chang et al. (Sep 2025)
Nature Communications 16
Modulating the PPARγ pathway upregulates NECTIN4 and enhances chimeric antigen receptor (CAR) T cell therapy in bladder cancer
With the approval of the antibody-drug conjugate enfortumab vedotin (EV),NECTIN4 has emerged as a bona fide therapeutic target in urothelial carcinoma (UC). Here,we report the development of a NECTIN4-directed chimeric antigen receptor (CAR) T cell,which exhibits reactivity across cells expressing a range of endogenous NECTIN4,with enhanced activity in high expressors. We demonstrate that the PPARγ pathway,critical for luminal differentiation,transcriptionally controls NECTIN4,and that the PPARγ agonist rosiglitazone primes and augments NECTIN4 expression,thereby increasing sensitivity to NECTIN4-CAR T cell-mediated killing. NECTIN4-CAR T cells have potent anti-tumor activity even against EV resistant cells,which largely retain NECTIN4 expression,including in a post-EV biopsy cohort. Our results elucidate a therapeutically actionable mechanism that UC cells use to control NECTIN4 expression and suggest therapeutic approaches that leverage PPARγ agonists for rational combinations with NECTIN4-targeting agents in UC,as well as future potential treatment options for EV-refractory patients. Subject terms: Bladder cancer,Cancer immunotherapy,Cancer therapeutic resistance,Oncology,Bladder cancer
View Publication
产品类型:
产品号#:
100-0956
10981
产品名:
ImmunoCult™ XF培养基
ImmunoCult™ XF 人T细胞扩增培养基,500 mL
Nagano M et al. (JUL 2007)
Blood 110 1 151--60
Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood.
Umbilical cord blood (UCB) has been used as a potential source of various kinds of stem cells,including hematopoietic stem cells,mesenchymal stem cells,and endothelial progenitor cells (EPCs),for a variety of cell therapies. Recently,EPCs were introduced for restoring vascularization in ischemic tissues. An appropriate procedure for isolating EPCs from UCB is a key issue for improving therapeutic efficacy and eliminating the unexpected expansion of nonessential cells. Here we report a novel method for isolating EPCs from UCB by a combination of negative immunoselection and cell culture techniques. In addition,we divided EPCs into 2 subpopulations according to the aldehyde dehydrogenase (ALDH) activity. We found that EPCs with low ALDH activity (Alde-Low) possess a greater ability to proliferate and migrate compared to those with high ALDH activity (Alde-High). Moreover,hypoxia-inducible factor proteins are up-regulated and VEGF,CXCR4,and GLUT-1 mRNAs are increased in Alde-Low EPCs under hypoxic conditions,while the response was not significant in Alde-High EPCs. In fact,the introduction of Alde-Low EPCs significantly reduced tissue damage in ischemia in a mouse flap model. Thus,the introduction of Alde-Low EPCs may be a potential strategy for inducing rapid neovascularization and subsequent regeneration of ischemic tissues.
View Publication