Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel–forming cells in dogs and humans,respectively. These vasoformative sarcomas are aggressive and highly metastatic,with disorganized,irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized,and they were lined by both donor and host cells. In a series of xenografts,we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore,gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas,and possibly human angiosarcomas,maintain molecular properties that provide hematopoietic support and facilitate stromal reactions,suggesting their potential involvement in promoting the growth of hematopoietic tumors. We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation,providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.
View Publication
产品类型:
产品号#:
04435
04445
05150
产品名:
MethoCult™H4435富集
MethoCult™H4435富集
MyeloCult™H5100
M. A. Loberg et al. (jul 2019)
Leukemia 33 7 1635--1649
Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis.
Clonal hematopoiesis (CH) is a common aging-associated condition with increased risk of hematologic malignancy. Knowledge of the mechanisms driving evolution from CH to overt malignancy has been hampered by a lack of in vivo models that orthogonally activate mutant alleles. Here,we develop independently regulatable mutations in DNA methyltransferase 3A (Dnmt3a) and nucleophosmin 1 (Npm1),observed in human CH and AML,respectively. We find Dnmt3a mutation expands hematopoietic stem and multipotent progenitor cells (HSC/MPPs),modeling CH. Induction of mutant Npm1 after development of Dnmt3a-mutant CH causes progression to myeloproliferative disorder (MPD),and more aggressive MPD is observed with longer latency between mutations. MPDs uniformly progress to acute myeloid leukemia (AML) following transplant,accompanied by a decrease in HSC/MPPs and an increase in myeloid-restricted progenitors,the latter of which propagate AML in tertiary recipient mice. At a molecular level,progression of CH to MPD is accompanied by selection for mutations activating Ras/Raf/MAPK signaling. Progression to AML is characterized by additional oncogenic signaling mutations (Ptpn11,Pik3r1,Flt3) and/or mutations in epigenetic regulators (Hdac1,Idh1,Arid1a). Together,our study demonstrates that Npm1 mutation drives evolution of Dnmt3a-mutant CH to AML and rate of disease progression is accelerated with longer latency of CH.
View Publication
产品类型:
产品号#:
03434
03444
产品名:
MethoCult™GF M3434
MethoCult™GF M3434
Mousa SA et al. (MAR 2010)
Cancer Letters 289 2 208--216
Stress resistant human embryonic stem cells as a potential source for the identification of novel cancer stem cell markers
Cancer stem cells are known for their inherent resistance to therapy. Here we investigated whether normal stem cells with acquired resistance to stress can be used to identify novel markers of cancer stem cells. For this,we generated a human embryonic stem cell line resistant to Trichostatin A and analyzed changes in its gene expression. The resistant cells over-expressed various genes associated with tumor aggressiveness,many of which are also expressed in the CD133+ glioma cancer stem cells. These findings suggest that stress-resistant stem cells generated in vitro may be useful for the discovery of novel markers of cancer stem cells.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Wang L et al. (DEC 2016)
Materials science & engineering. C,Materials for biological applications 69 1125--1136
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs),dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However,there has been no report comparing hDPSCs,hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering,and (2) compare cell viability,proliferation and osteogenic differentiation of hDPSCs,hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs),and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs,BM-hiPSC-MSCs,and hBMSCs exhibited high alkaline phosphatase,runt-related transcription factor,collagen I,and osteocalcin gene expressions. Cell-synthesized minerals increased with time (ptextless0.05),with no significant difference among hDPSCs,BM-hiPSC-MSCs and hBMSCs (ptextgreater0.1). Mineralization by hDPSCs,BM-hiPSC-MSCs,and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion,hDPSCs,BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however,FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental,craniofacial and orthopedic applications.
View Publication
产品类型:
产品号#:
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mTeSR™1
mTeSR™1
Agrawal B et al. (SEP 1998)
Cancer research 58 18 4079--81
Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation.
MUC1 mucin is expressed by normal and malignant epithelial cells and is thought to function through cell-cell interactions and transmembrane signal transduction events. Secreted cancer-associated MUC1 is immunosuppressive and inhibits human T-cell proliferation. We report here that newly synthesized MUC1 is expressed on the surface of mitogen-activated human T cells and is also found in soluble form in the supernatants from cultures of mitogen-activated human T cells. After removal of the mitogenic stimulus from the T-cell cultures,MUC1 expression is downregulated. The addition of anti-MUC1 monoclonal antibody to mitogen-activated cultures partially inhibits the T-cell proliferative response. These data suggest that MUC1 serves an immunodulatory function for human T lymphocytes.
View Publication
产品类型:
产品号#:
01423
产品名:
X. Li et al. (jan 2022)
ImmunoHorizons 6 1 64--75
IL-23 Promotes Neutrophil Extracellular Trap Formation and Bacterial Clearance in a Mouse Model of Alcohol and Burn Injury.
Our previous studies have shown that ethanol intoxication combined with burn injury increases intestinal bacterial growth,disrupts the intestinal barrier,and enhances bacterial translocation. Additionally,studies show that Th17 effector cytokines IL-17 and IL-22,which are dependent on IL-23,play important roles in maintaining intestine mucosal barrier integrity. Recent findings suggest neutrophils are a significant source of IL-17 and IL-22. We determined the effect of ethanol and burn injury on neutrophil IL-17 and IL-22 production,as well as their ability to phagocytose and in bacterial clearance,and whether these effects are modulated by IL-23. Mice were given ethanol 4 h prior to receiving ˆ¼12.5% total body surface area burn and were euthanized day 1 after injury. We observed that intoxication combined with burn injury significantly decreases blood neutrophil phagocytosis and bacteria killing,as well as their ability to produce IL-17 and IL-22,compared with sham vehicle mice. The treatment of neutrophils with rIL-23 significantly increases IL-22 and IL-17 release and promotes expression of IL-23R,retinoic acid-related orphan receptor $\gamma$t,Lipocalin2,and Nod-like receptor 2 following ethanol and burn injury. Furthermore,IL-22- and IL-17-producing neutrophils have enhanced neutrophil extracellular trap formation and bacterial killing ability,which are dependent on IL-23. Finally,although we observed that peritoneal neutrophils harvested after casein treatment are functionally different from blood neutrophils,both blood and peritoneal neutrophils exhibited the same response to rIL-23 treatment. Together these findings suggest that IL-23 promotes neutrophil IL-22 and IL-17 production and their ability to kill bacteria following ethanol and burn injury.
View Publication
Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction,multiple organ failures,and high mortality. Despite decades of research,established ALF has minimal therapeutic options. Here,we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%,even administered 24?hours after ALF establishment. We identify adiponectin receptor 2 (AdipoR2) as a selective target of SCM-198,with the AdipoR2 R335 residue being critical for the binding and signaling of SCM-198-AdipoR2 and AdipoR2 Y274 residue serving as a molecular switch for Ca2+ influx. SCM-198-AdipoR2 binding causes Ca2+ influx and elevates the phosphorylation levels of CaMKII and NOS3 in the AdipoR2-CaM-CaMKII-NOS3 complex identified in this study,rapidly inducing nitric oxide production for liver protection in murine ALF. SCM-198 also protects human ESC-derived liver organoids from APAP/TAA injuries. Thus,selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 is a rapid-acting therapeutic strategy for advanced ALF. Late-stage acute liver failure (ALF) has limited therapies. The authors show that the bioactive compound SCM-198 extends the ALF treatment window from 3 to 24?hours in mice by selectively targeting the identified AdipoR2-CaM-CaMKII-NOS3-NO axis.
View Publication
HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells.
Infection with human immunodeficiency virus 1 (HIV-1) results in the dissemination of virus to gut-associated lymphoid tissue. Subsequently,HIV-1 mediates massive depletion of gut CD4+ T cells,which contributes to HIV-1-induced immune dysfunction. The migration of lymphocytes to gut-associated lymphoid tissue is mediated by integrin alpha4beta7. We demonstrate here that the HIV-1 envelope protein gp120 bound to an activated form of alpha4beta7. This interaction was mediated by a tripeptide in the V2 loop of gp120,a peptide motif that mimics structures presented by the natural ligands of alpha4beta7. On CD4+ T cells,engagement of alpha4beta7 by gp120 resulted in rapid activation of LFA-1,the central integrin involved in the establishment of virological synapses,which facilitate efficient cell-to-cell spreading of HIV-1.
View Publication
产品类型:
产品号#:
19052
19052RF
19055
19055RF
产品名:
EasySep™人CD4+ T细胞富集试剂盒
RoboSep™ 人CD4+ T细胞富集试剂盒含滤芯吸头
EasySep™人NK细胞富集试剂盒
RoboSep™ 人NK细胞富集试剂盒含滤芯吸头
Orellana MD et al. (AUG 2015)
Cryobiology 71 1 151--160
Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium,Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF,respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF,respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium,for two cryopreservation systems (Ptextless0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated,maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
View Publication
产品类型:
产品号#:
05854
05855
05850
05857
05870
05875
85850
85857
85870
85875
产品名:
mFreSR™
mFreSR™
mTeSR™1
mTeSR™1
G. Schiroli et al. (apr 2019)
Cell stem cell 24 4 551--565.e8
Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response.
Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However,responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here,we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction,cell-cycle progression,and transcriptional responses in HSPC subpopulations,with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation,constraining proliferation,yield,and engraftment of edited HSPCs. However,functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs.
View Publication
产品类型:
产品号#:
04434
04444
72912
72914
产品名:
MethoCult™H4434经典
MethoCult™H4434经典
Ting S et al. (SEP 2014)
Stem Cell Research 13 2 202--213
An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures
The development of novel platforms for large scale production of human embryonic stem cells (hESC) derived cardiomyocytes (CM) becomes more crucial as the demand for CMs in preclinical trials,high throughput cardio toxicity assays and future regenerative therapeutics rises. To this end,we have designed a microcarrier (MC) suspension agitated platform that integrates pluripotent hESC expansion followed by CM differentiation in a continuous,homogenous process.Hydrodynamic shear stresses applied during the hESC expansion and CM differentiation steps drastically reduced the capability of the cells to differentiate into CMs. Applying vigorous stirring during pluripotent hESC expansion on Cytodex 1 MC in spinner cultures resulted in low CM yields in the following differentiation step (cardiac troponin-T (cTnT): 22.83. ??. 2.56%; myosin heavy chain (MHC): 19.30. ??. 5.31%). Whereas the lower shear experienced in side to side rocker (wave type) platform resulted in higher CM yields (cTNT: 47.50. ??. 7.35%; MHC: 42.85. ??. 2.64%). The efficiency of CM differentiation is also affected by the hydrodynamic shear stress applied during the first 3. days of the differentiation stage. Even low shear applied continuously by side to side rocker agitation resulted in very low CM differentiation efficiency (cTnT. textless. 5%; MHC. textless. 2%). Simply by applying intermittent agitation during these 3. days followed by continuous agitation for the subsequent 9. days,CM differentiation efficiency can be substantially increased (cTNT: 65.73. ??. 10.73%; MHC: 59.73. ??. 9.17%). These yields are 38.3% and 39.3% higher (for cTnT and MHC respectively) than static culture control.During the hESC expansion phase,cells grew on continuously agitated rocker platform as pluripotent cell/MC aggregates (166??88??105??m2) achieving a cell concentration of 3.74??0.55??106cells/mL (18.89??2.82 fold expansion) in 7days. These aggregates were further differentiated into CMs using a WNT modulation differentiation protocol for the subsequent 12days on a rocking platform with an intermittent agitation regime during the first 3days. Collectively,the integrated MC rocker platform produced 190.5??58.8??106 CMs per run (31.75??9.74 CM/hESC seeded). The robustness of the system was demonstrated by using 2 cells lines,hESC (HES-3) and human induced pluripotent stem cell (hiPSC) IMR-90. The CM/MC aggregates formed extensive sarcomeres that exhibited cross-striations confirming cardiac ontogeny. Functionality of the CMs was demonstrated by monitoring the effect of inotropic drug,Isoproterenol on beating frequency.In conclusion,we have developed a simple robust and scalable platform that integrates both hESC expansion and CM differentiation in one unit process which is capable of meeting the need for large amounts of CMs. ?? 2014.
View Publication