Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.
Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however,although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes,most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here,the authors report a 3D cellular microenvironment plate (3D-CEP),which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG),which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally,global gene expression analyses are used to elucidate small variations among different test environments. Interestingly,the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.
View Publication
文献
Araujo AR et al. (OCT 2016)
Molecular cell 64 2 362--375
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-,S-,and G2 phases,duration of mitosis is short and remarkably constant. Surprisingly,there is no correlation between cell-cycle length and mitotic duration,suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling,we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish,variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short,constant,and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems.
View Publication
文献
Panula S et al. ( 2016)
PloS one 11 10 e0165268
Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells.
The mechanisms underlying human germ cell development are largely unknown,partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here,we studied NANOS3 and DAZL,which have critical roles in germ cell development in several species,via their over expression in human embryonic stem cells using global transcriptional analysis,in vitro germ cell differentiation,and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition,we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL,our results suggest a post-transcriptional regulation mechanism in hES cells. In addition,we found that DAZL suppressed the translation of OCT4,and affected the transcription of several genes associated with germ cells,cell cycle arrest,and cell migration. Furthermore,DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
View Publication
文献
Xie N et al. ( 2016)
PloS one 11 10 e0165499
Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome.
Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle,we excised the expanded CGG-repeat in both somatic cell hybrids containing the human fragile X chromosome and human FXS iPS cells using the CRISPR/Cas9 genome editing. We observed transcriptional reactivation in approximately 67% of the CRISPR cut hybrid colonies and in 20% of isolated human FXS iPSC colonies. The reactivated cells produced FMRP and exhibited a decline in DNA methylation at the FMR1 locus. These data demonstrate the excision of the expanded CGG-repeat from the fragile X chromosome can result in FMR1 reactivation.
View Publication
文献
Sano M et al. ( 2016)
PloS one 11 10 e0164720
Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs.
Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However,existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study,we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because of the capacity of Sendai virus (SeV) nonstructural C proteins to specifically inhibit viral RNA synthesis,overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression,target sequences for an endogenous microRNA were incorporated into the 3' untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore,the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications.
View Publication
文献
Sagi I et al. (NOV 2016)
Nature protocols 11 11 2274--2286
Identification and propagation of haploid human pluripotent stem cells.
Haploid human pluripotent stem cells (PSCs) integrate haploidy and pluripotency,providing a novel system for functional genomics and developmental research in humans. We have recently derived haploid human embryonic stem cells (ESCs) by parthenogenesis and demonstrated their wide differentiation potential and applicability for genetic screening. Because haploid cells can spontaneously become diploid,their enrichment at an early passage is key for successful derivation. In this protocol,we describe two methodologies,namely metaphase spread analysis and cell sorting,for the identification of haploid human cells within parthenogenetic ESC lines. The cell sorting approach also enables the isolation of haploid cells at low percentages,as well as the maintenance of highly enriched haploid ESC lines throughout passaging. The isolation of essentially pure populations of haploid human ESCs by this protocol requires basic PSC culture expertise and can be achieved within 4-6 weeks.
View Publication
文献
Zou Y et al. (FEB 2017)
Biogerontology 18 1 69--84
Telomere length is regulated by FGF-2 in human embryonic stem cells and affects the life span of its differentiated progenies.
The ability of human embryonic stem cells (hESCs) to proliferate indefinitely is attributed to its high telomerase activity and associated long telomere. However,factors regulating telomere length in hESCs remain largely uncharacterized. The aims of this study were,to identify factors which modulate telomere length of hESCs,and to determine if the telomere length of hESCs influences cellular senescence of its differentiated progeny cells. Telomerase reverse transcriptase (TERT) gene expression,telomerase activity and telomere length of hESCs cultured in different culture systems were compared. Genetically identical hESCs of different telomere lengths were differentiated into fibroblasts simultaneously,and the population doubling and cellular senescence levels were determined. We found that telomere lengths were significantly different in different culture systems and Fibroblast growth factor-2 (FGF-2) upregulated TERT expression,telomerase activity and telomere length via Wnt/β-catenin signaling pathway in hESCs in a significant manner. We also provide evidence that fibroblast differentiated from hESCs with longer telomere exhibited significant more population doublings and longer life span than those derived from hESCs with shorter telomeres. Thus,FGF-2 levels in hESCs culture systems can be manipulated to generate cells with longer telomere which would be advantageous in the applications of hESCs in regenerative medicine.
View Publication
文献
Compagnucci C et al. (DEC 2016)
Molecular and cellular neurosciences 77 113--124
Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs).
Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases,in particular those affecting the nervous system,which has been difficult to study for its lack of accessibility. In this emerging and promising field,recent iPSCs studies are mostly used as proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development�
View Publication
文献
Massumi M et al. ( 2016)
PloS one 11 10 e0164457
An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells.
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here,through the sequential in vitro targeting of selected signaling pathways,we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex,as an extracellular matrix,could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP,SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL,and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells,1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally,ES-DBCs were responsive to high glucose in static incubation and perifusion studies,and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion,targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs,small molecules or genes that may have potential to influence beta-cell function.
View Publication
文献
Miranda C et al. (DEC 2016)
Biotechnology journal 11 12 1628--1638
Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work,we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks,and the process was optimized using a factorial design approach,involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures,that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that,after replating,retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled,automated and reproducible large-scale bioreactor culture systems.
View Publication
文献
Greene WA et al. (AUG 2016)
Investigative ophthalmology & visual science 57 10 4428--4441
Secretion Profile of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium During Wound Healing.
Purpose The purpose of this study was to characterize the secretion profile of induced pluripotent stem cell-derived retinal pigment epithelium (iPS-RPE) during wound healing. iPS-RPE was used to develop an in vitro wound healing model. We hypothesized that iPS-RPE secretes cytokines and growth factors which act in an autocrine manner to promote migration and proliferation of cells during wound healing. Methods iPS-RPE was grown in transwells until fully confluent and pigmented. The monolayers were scratched to induce a wound. Levels of Ki-67,$$-catenin,e-cadherin,n-cadherin,and S100A4 expression were analyzed by immunofluorescent labeling. Cell culture medium samples were collected from both the apical and basolateral sides of the transwells every 72 hours for 21 days. The medium samples were analyzed using multiplex ELISA to detect secreted growth factors and cytokines. The effects of conditioned medium on collagen gel contraction,cell proliferation,and migration were measured. Results iPS-RPE underwent epithelial-mesenchymal transition (EMT) during wound healing as indicated by the translocation of $$-catenin to the nucleus,cadherin switch,and expression of S100A4. GRO,GM-CSF,MCP-1,IL-6,and IL-8 were secreted by both the control and the wounded cell cultures. VEGF,FGF-2,and TGF$$ expression were detected at higher levels after wounding than those in control. The proteins were found to be secreted in a polarized manner. The conditioned medium from wounded monolayers promoted collagen gel contraction,as well as proliferation and migration of ARPE 19 cells. Conclusions These results indicate that after the monolayer is wounded,iPS-RPE secretes proteins into the culture medium that promote increased proliferation,contraction,and migration.
View Publication
文献
Cipriano AF et al. (JAN 2017)
Acta biomaterialia 48 499--520
Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys.
Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15,0.5,1.0,1.5wt%; designated as ZSr41A,B,C,and D respectively) in the direct culture with human umbilical vein endothelial cells (HUVEC) in vitro. The second objective was to investigate,for the first time,the early-stage inflammatory response in cultured HUVECs as indicated by the induction of vascular cellular adhesion molecule-1 (VCAM-1). The results showed that the 24-h in vitro degradation of the ZSr41 alloys containing a β-phase with a Zn/Sr at% ratio ∼1.5 was significantly faster than the ZSr41 alloys with Zn/Sr at% ∼1. Additionally,the adhesion density of HUVECs in the direct culture but not in direct contact with the ZSr41 alloys for up to 24h was not adversely affected by the degradation of the alloys. Importantly,neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on HUVEC responses. In contrast,the significantly higher,yet non-cytotoxic,Zn(2+) ion concentration from the degradation of ZSr41D alloy was likely the cause for the initially higher VCAM-1 expression on cultured HUVECs. Lastly,analysis of the HUVEC-ZSr41 interface showed near-complete absence of cell adhesion directly on the sample surface,most likely caused by either a high local alkalinity,change in surface topography,and/or surface composition. The direct culture method used in this study was proposed as a valuable tool for studying the design aspects of Zn-containing Mg-based biomaterials in vitro,in order to engineer solutions to address current shortcomings of Mg alloys for vascular device applications. STATEMENT OF SIGNIFICANCE Magnesium (Mg) alloys specifically designed for biodegradable implant applications have been the focus of biomedical research since the early 2000s. Physicochemical properties of Mg alloys make these metallic biomaterials excellent candidates for temporary biodegradable implants in orthopedic and cardiovascular applications. As Mg alloys continue to be investigated for biomedical applications,it is necessary to understand whether Mg-based materials or the alloying elements have the intrinsic ability to direct an immune response to improve implant integration while avoiding cell-biomaterial interactions leading to chronic inflammation and/or foreign body reactions. The present study utilized the direct culture method to investigate for the first time the in vitro transient inflammatory activation of endothelial cells induced by the degradation products of Zn-containing Mg alloys.
View Publication