Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions.
BACKGROUND & AIMS One major obstacle of hepatitis B virus (HBV) research is the lack of efficient cell culture system permissive for viral infection and replication. The aim of our study was to establish a robust HBV infection model by using hepatocyte-like cells (HLCs) derived from human pluripotent stem cells. METHODS HLCs were differentiated from human embryonic stem cells and induced pluripotent stem cells. Maturation of hepatocyte functions was determined. After HBV infection,total viral DNA,cccDNA,total viral RNA,pgRNA,HBeAg and HBsAg were measured. RESULTS More than 90% of the HLCs expressed strong signals of human hepatocyte markers,like albumin,as well as known host factors required for HBV infection,suggesting that these cells possessed key features of mature hepatocytes. Notably,HLCs expressed the viral receptor sodium-taurocholate cotransporting polypeptide more stably than primary human hepatocytes (PHHs). HLCs supported robust infection and some spreading of HBV. Finally,by using this model,we identified two host-targeting agents,genistin and PA452,as novel antivirals. CONCLUSIONS Stem cell-derived HLCs fully support HBV infection. This novel HLC HBV infection model offers a unique opportunity to advance our understanding of the molecular details of the HBV life cycle; to further characterize virus-host interactions and to define new targets for HBV curative treatment. LAY SUMMARY Our study used human pluripotent stem cells to develop hepatocyte-like cells (HLCs) capable of expressing hepatocyte markers and host factors important for HBV infection. These cells fully support HBV infection and virus-host interactions,allowing for the identification of two novel antiviral agents. Thus,stem cell-derived HLCs provide a highly physiologically relevant system to advance our understanding of viral life cycle and provide a new tool for antiviral drug screening and development.
View Publication
文献
Deglincerti A et al. (NOV 2016)
Nature protocols 11 11 2223--2232
Self-organization of human embryonic stem cells on micropatterns.
Fate allocation in the gastrulating embryo is spatially organized as cells differentiate into specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. Although embryoid bodies and organoids can exhibit some spatial organization of differentiated cells,methods that generate embryoid bodies or organoids do not yield consistent and fully reproducible results. Here,we describe a micropatterning approach in which human embryonic stem cells are confined to disk-shaped,submillimeter colonies. After 42 h of BMP4 stimulation,cells form self-organized differentiation patterns in concentric radial domains,which express specific markers associated with the embryonic germ layers,reminiscent of gastrulating embryos. Our protocol takes 3 d; it uses commercial microfabricated slides (from CYTOO),human laminin-521 (LN-521) as extracellular matrix coating,and either conditioned or chemically defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation.
View Publication
文献
M. A. DeWitt et al. (OCT 2016)
Science translational medicine 8 360 360ra134
Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
Genetic diseases of blood cells are prime candidates for treatment through ex vivo gene editing of CD34+ hematopoietic stem/progenitor cells (HSPCs),and a variety of technologies have been proposed to treat these disorders. Sickle cell disease (SCD) is a recessive genetic disorder caused by a single-nucleotide polymorphism in the $\beta$-globin gene (HBB). Sickle hemoglobin damages erythrocytes,causing vasoocclusion,severe pain,progressive organ damage,and premature death. We optimize design and delivery parameters of a ribonucleoprotein (RNP) complex comprising Cas9 protein and unmodified single guide RNA,together with a single-stranded DNA oligonucleotide donor (ssODN),to enable efficient replacement of the SCD mutation in human HSPCs. Corrected HSPCs from SCD patients produced less sickle hemoglobin RNA and protein and correspondingly increased wild-type hemoglobin when differentiated into erythroblasts. When engrafted into immunocompromised mice,ex vivo treated human HSPCs maintain SCD gene edits throughout 16 weeks at a level likely to have clinical benefit. These results demonstrate that an accessible approach combining Cas9 RNP with an ssODN can mediate efficient HSPC genome editing,enables investigator-led exploration of gene editing reagents in primary hematopoietic stem cells,and suggests a path toward the development of new gene editing treatments for SCD and other hematopoietic diseases.
View Publication
文献
Yanagihara K et al. (DEC 2016)
Stem cells and development 25 24 1884--1897
Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells.
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However,the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study,we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line,H9,which is known to differentiate into hepatocytes,and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs,hPSC-derived hepatoblast-like differentiated cells,and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus,our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
View Publication
文献
Son M-Y et al. (JAN 2017)
Stem cells and development 26 2 133--145
Biomarker Discovery by Modeling Behçet's Disease with Patient-Specific Human Induced Pluripotent Stem Cells.
Behçet's disease (BD) is a chronic inflammatory and multisystemic autoimmune disease of unknown etiology. Due to the lack of a specific test for BD,its diagnosis is very difficult and therapeutic options are limited. Induced pluripotent stem cell (iPSC) technology,which provides inaccessible disease-relevant cell types,opens a new era for disease treatment. In this study,we generated BD iPSCs from patient somatic cells and differentiated them into hematopoietic precursor cells (BD iPSC-HPCs) as BD model cells. Based on comparative transcriptome analysis using our BD model cells,we identified eight novel BD-specific genes,AGTR2,CA9,CD44,CXCL1,HTN3,IL-2,PTGER4,and TSLP,which were differentially expressed in BD patients compared with healthy controls or patients with other immune diseases. The use of CXCL1 as a BD biomarker was further validated at the protein level using both a BD iPSC-HPC-based assay system and BD patient serum samples. Furthermore,we show that our BD iPSC-HPC-based drug screening system is highly effective for testing CXCL1 BD biomarkers,as determined by monitoring the efficacy of existing anti-inflammatory drugs. Our results shed new light on the usefulness of patient-specific iPSC technology in the development of a benchmarking platform for disease-specific biomarkers,phenotype- or target-driven drug discovery,and patient-tailored therapies.
View Publication
文献
Rodrigues DC et al. (OCT 2016)
Cell reports 17 3 720--734
MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs.
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment,but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2,we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence,the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile,translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons,resulting in a switch to translational enhancement. Ultimately,3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.
View Publication
文献
Kim Y et al. (OCT 2016)
Scientific reports 6 35145
Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo.
Insulin secretion is elaborately modulated in pancreatic ß cells within islets of three-dimensional (3D) structures. Using human pluripotent stem cells (hPSCs) to develop islet-like structures with insulin-producing ß cells for the treatment of diabetes is challenging. Here,we report that pancreatic islet-like clusters derived from hESCs are functionally capable of glucose-responsive insulin secretion as well as therapeutic effects. Pancreatic hormone-expressing endocrine cells (ECs) were differentiated from hESCs using a step-wise protocol. The hESC-derived ECs expressed pancreatic endocrine hormones,such as insulin,somatostatin,and pancreatic polypeptide. Notably,dissociated ECs autonomously aggregated to form islet-like,3D structures of consistent sizes (100-150 μm in diameter). These EC clusters (ECCs) enhanced insulin secretion in response to glucose stimulus and potassium channel inhibition in vitro. Furthermore,ß cell-deficient mice transplanted with ECCs survived for more than 40 d while retaining a normal blood glucose level to some extent. The expression of pancreatic endocrine hormones was observed in tissues transplanted with ECCs. In addition,ECCs could be generated from human induced pluripotent stem cells. These results suggest that hPSC-derived,islet-like clusters may be alternative therapeutic cell sources for treating diabetes.
View Publication
文献
Sandströ et al. (FEB 2017)
Toxicology in vitro : an international journal published in association with BIBRA 38 124--135
Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells,the possibility of generating human in vitro models has gained interest,as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues,using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers,paralleled by an increase in markers specific for mature neurons,astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons,but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required,these results indicate its potential usefulness for in vitro neurotoxicity testing.
View Publication
文献
Yao H et al. (DEC 2016)
Neuroscience 339 329--337
The Na(+)/HCO3(-) co-transporter is protective during ischemia in astrocytes.
The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood-brain barrier,synaptic transmission,and electrolyte balance in the human brain. Nevertheless,the role of NBC in the ischemic astrocyte death has not been well understood. In this work,we obtained skin biopsies from healthy human subjects and had their fibroblasts grown in culture and reprogrammed into human-induced pluripotent stem cells (hiPSCs). These hiPSCs were further differentiated into neuroprogenitor cells (NPCs) and then into human astrocytes. These astrocytes express GFAP and S100β and readily propagate calcium waves upon mechanical stimulation. Using pH-sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] and qPCR technique,we have confirmed that these astrocytes express functional NBC including electrogenic NBC (NBCe). In addition,astrocytes exposed to an ischemic solution (IS) that mimics the ischemic penumbral environment enhanced both mRNA and protein expression level of NBCe1 in astrocytes. Using IS and a generic NBC blocker S0859,we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30μM S0859 induced a 97.5±1.6% (n=10) cell death in IS-treated astrocytes,which is significantly higher than 43.6±4.5%,(n=10) in the control group treated with IS alone. In summary,a NBC blocker exaggerates IS-induced cell death,suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment.
View Publication
文献
Larsen ZH et al. (NOV 2016)
Alcoholism,clinical and experimental research 40 11 2339--2350
Effects of Ethanol on Cellular Composition and Network Excitability of Human Pluripotent Stem Cell-Derived Neurons.
BACKGROUND Prenatal alcohol exposure (PAE) in animal models results in excitatory-inhibitory (E/I) imbalance in neocortex due to alterations in the GABAergic interneuron (IN) differentiation and migration. Thus,E/I imbalance is a potential cause for intellectual disability in individuals with fetal alcohol spectrum disorder (FASD),but whether ethanol (EtOH) changes glutamatergic and GABAergic IN specification during human development remains unknown. Here,we created a human cellular model of PAE/FASD and tested the hypothesis that EtOH exposure during differentiation of human pluripotent stem cell-derived neurons (hPSNs) would cause the aberrant production of glutamatergic and GABAergic neurons,resulting in E/I imbalance. METHODS We applied 50 mM EtOH daily to differentiating hPSNs for 50 days to model chronic first-trimester exposure. We used quantitative polymerase chain reaction,immunocytochemical,and electrophysiological analysis to examine the effects of EtOH on hPSN specification and functional E/I balance. RESULTS We found that EtOH did not alter neural induction nor general forebrain patterning and had no effect on the expression of markers of excitatory cortical pyramidal neurons. In contrast,our data revealed highly significant changes to levels of transcripts involved with IN precursor development (e.g.,GSX2,DLX1/2/5/6,NR2F2) as well as mature IN specification (e.g.,SST,NPY). Interestingly,EtOH did not affect the number of GABAergic neurons generated nor the frequency or amplitude of miniature excitatory and inhibitory postsynaptic currents. CONCLUSIONS Similar to in vivo rodent studies,EtOH significantly and specifically altered the expression of genes involved with IN specification from hPSNs,but did not cause imbalances of synaptic excitation-inhibition. Thus,our findings corroborate previous studies pointing to aberrant neuronal differentiation as an underlying mechanism of intellectual disability in FASD. However,in contrast to rodent binge models,our chronic exposure model suggests possible compensatory mechanisms that may cause more subtle defects of network processing rather than gross alterations in total E/I balance.
View Publication
文献
Daneshvar K et al. (OCT 2016)
Cell reports 17 2 353--365
DIGIT Is a Conserved Long Noncoding RNA that Regulates GSC Expression to Control Definitive Endoderm Differentiation of Embryonic Stem Cells.
Long noncoding RNAs (lncRNAs) exhibit diverse functions,including regulation of development. Here,we combine genome-wide mapping of SMAD3 occupancy with expression analysis to identify lncRNAs induced by activin signaling during endoderm differentiation of human embryonic stem cells (hESCs). We find that DIGIT is divergent to Goosecoid (GSC) and expressed during endoderm differentiation. Deletion of the SMAD3-occupied enhancer proximal to DIGIT inhibits DIGIT and GSC expression and definitive endoderm differentiation. Disruption of the gene encoding DIGIT and depletion of the DIGIT transcript reveal that DIGIT is required for definitive endoderm differentiation. In addition,we identify the mouse ortholog of DIGIT and show that it is expressed during development and promotes definitive endoderm differentiation of mouse ESCs. DIGIT regulates GSC in trans,and activation of endogenous GSC expression is sufficient to rescue definitive endoderm differentiation in DIGIT-deficient hESCs. Our study defines DIGIT as a conserved noncoding developmental regulator of definitive endoderm.
View Publication
文献
Yuan Y et al. (OCT 2016)
Scientific reports 6 34476
Efficient long-term cryopreservation of pluripotent stem cells at -80 °C.
Current long term cryopreservation of cell stocks routinely requires the use of liquid nitrogen (LN2),because commonly used cryopreservation media containing cell membrane permeating cryoprotectants are thermally unstable when frozen at higher storage temperatures,e.g. -80 °C. This instability leads to ice recrystallization,causing progressive loss of cell viability over time under the storage conditions provided by most laboratory deep freezers. The dependency on LN2 for cell storage significantly increases operational expense and raises issues related to impaired working efficiency and safety. Here we demonstrate that addition of Ficoll 70 to cryoprotectant solutions significantly improves system thermal stability at the working temperature (˜-80 °C) of laboratory deep freezers. Moreover,a medium comprised of Ficoll 70 and dimethyl sulfoxide (DMSO) in presence or absence of fetal bovine serum (FBS) can provide reliable cryopreservation of various kinds of human and porcine pluripotent stem cells at -80 °C for periods that extend up to at least one year,with the post-thaw viability,plating efficiency,and full retention of pluripotent phenotype comparable to that achieved with LN2 storage. These results illustrate the practicability of a promising long-term cryopreservation method that completely eliminates the need for LN2.
View Publication