Nagy A and Rossant J (MAR 1996)
The Journal of clinical investigation 97 6 1360--5
Targeted mutagenesis: analysis of phenotype without germ line transmission.
The available techniques for directed gene manipulation in the mouse are unprecedented in any multicellular organism and make the mouse an invaluable tool for unraveling all aspects of mammalian biology. To realize fully the potential of these genetic tools requires that phenotypic analysis be efficient,rapid,and complete. Genetic chimeras and mosaics,in which mutant cells are mixed with wild-type cells,can be used to augment standard analysis of intact mutant animals and alleviate the time required and the expense involved in generating and maintaining multiple strains of mutant mice.
View Publication
文献
Keller GM (DEC 1995)
Current opinion in cell biology 7 6 862--9
In vitro differentiation of embryonic stem cells.
Under appropriate conditions in culture,embryonic stem cells will differentiate and form embryoid bodies that have been shown to contain cells of the hematopoietic,endothelial,muscle and neuronal lineages. Many aspects of the lineage-specific differentiation programs observed within the embryoid bodies reflect those found in the embryo,indicating that this model system provides access to early cell populations that develop in a normal fashion. Recent studies involving the differentiation of genetically altered embryonic stem cells highlight the potential of this in vitro differentiation system for defining the function of genes in early development.
View Publication
文献
Lewis J et al. (JAN 1996)
The Journal of clinical investigation 97 1 3--5
Gene modification via plug and socket" gene targeting."
Keller G et al. (JAN 1993)
Molecular and cellular biology 13 1 473--86
Hematopoietic commitment during embryonic stem cell differentiation in culture.
We report that embryonic stem cells efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells and that this in vitro system recapitulates days 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiation,and by day 6,more than 85% of EBs contain such cells. A comparative reverse transcriptase-mediated polymerase chain reaction profile of marker genes for primitive endoderm (collagen alpha IV) and mesoderm (Brachyury) indicates that both cell types are present in the developing EBs as well in normal embryos prior to the onset of hematopoiesis. GATA-1,GATA-3,and vav are expressed in both the EBs and embryos just prior to and/or during the early onset of hematopoiesis,indicating that they could play a role in the early stages of hematopoietic development both in vivo and in vitro. The initial stages of hematopoietic development within the EBs occur in the absence of added growth factors and are not significantly influenced by the addition of a broad spectrum of factors,including interleukin-3 (IL-3),IL-1,IL-6,IL-11,erythropoietin,and Kit ligand. At days 10 and 14 of differentiation,EB hematopoiesis is significantly enhanced by the addition of both Kit ligand and IL-11 to the cultures. Kinetic analysis indicates that hematopoietic precursors develop within the EBs in an ordered pattern. Precursors of the primitive erythroid lineage appear first,approximately 24 h before precursors of the macrophage and definitive erythroid lineages. Bipotential neutrophil/macrophage and multilineage precursors appear next,and precursors of the mast cell lineage develop last. The kinetics of precursor development,as well as the growth factor responsiveness of these early cells,is similar to that found in the yolk sac and early fetal liver,indicating that the onset of hematopoiesis within the EBs parallels that found in the embryo.
View Publication
文献
Maltsev VA et al. (NOV 1993)
Mechanisms of development 44 1 41--50
Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types.
Pluripotent embryonic stem cells (ESC,ES cells) of line D3 were differentiated in vitro and via embryo-like aggregates (embryoid bodies) of defined cell number into spontaneously beating cardiomyocytes. By using RT-PCR technique,alpha- and beta-cardiac myosin heavy chain (MHC) genes were found to be expressed in embryoid bodies of early to terminal differentiation stages. The exclusive expression of the beta-cardiac MHC gene detected in very early differentiated embryoid bodies proved to be dependent on the number of ES cells developing in the embryoid body. Cardiomyocytes enzymatically isolated from embryoid body outgrowths at different stages of development were further characterized by immunocytological and electrophysiological techniques. All cardiomyocytes appeared to be positive in immunofluorescence assays with monoclonal antibodies against cardiac-specific alpha-cardiac MHC,as well as muscle-specific sarcomeric myosin heavy chain and desmin. The patch-clamp technique allowed a more detailed characterization of the in vitro differentiated cardiomyocytes which were found to represent phenotypes corresponding to sinusnode,atrium or ventricle of the heart. The cardiac cells of early differentiated stage expressed pacemaker-like action potentials similar to those described for embryonic cardiomyocytes. The action potentials of terminally differentiated cells revealed shapes,pharmacological characteristics and hormonal regulation inherent to adult sinusnodal,atrial or ventricular cells. In cardiomyocytes of intermediate differentiation state,action potentials of very long duration (0.3-1 s) were found,which may represent developmentally controlled transitions between different types of action potentials. Therefore,the presented ES cell differentiation system permits the investigation of commitment and differentiation of embryonic cells into the cardiomyogenic lineage in vitro.
View Publication
文献
Nakano T et al. (AUG 1994)
Science (New York,N.Y.) 265 5175 1098--101
Generation of lymphohematopoietic cells from embryonic stem cells in culture.
An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid,myeloid,and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required,and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells,this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.
View Publication
文献
Johansson BM and Wiles MV (JAN 1995)
Molecular and cellular biology 15 1 141--51
Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development.
Xenopus in vitro studies have implicated both transforming growth factor beta (TGF-beta) and fibroblast growth factor (FGF) families in mesoderm induction. Although members of both families are present during mouse mesoderm formation,there is little evidence for their functional role in mesoderm induction. We show that mouse embryonic stem cells,which resemble primitive ectoderm,can differentiate to mesoderm in vitro in a chemically defined medium (CDM) in the absence of fetal bovine serum. In CDM,this differentiation is responsive to TGF-beta family members in a concentration-dependent manner,with activin A mediating the formation of dorsoanterior-like mesoderm and bone morphogenetic protein 4 mediating the formation of ventral mesoderm,including hematopoietic precursors. These effects are not observed in CDM alone or when TGF-beta 1,-beta 2,or -beta 3,acid FGF,or basic FGF is added individually to CDM. In vivo,at day 6.5 of mouse development,activin beta A RNA is detectable in the decidua and bone morphogenetic protein 4 RNA is detectable in the egg cylinder. Together,our data strongly implicate the TGF-beta family in mammalian mesoderm development and hematopoietic cell formation.
View Publication
文献
Bain G et al. (APR 1995)
Developmental biology 168 2 342--57
Embryonic stem cells express neuronal properties in vitro.
Mouse embryonic stem (ES) cells cultured as aggregates and exposed to retinoic acid are induced to express multiple phenotypes normally associated with neurons. A large percentage of treated aggregates produce a rich neuritic outgrowth. Dissociating the induced aggregates with trypsin and plating the cells as a monolayer results in cultures in which a sizable percentage of the cells have a neuronal appearance. These neuron-like cells express class III beta-tubulin and the neurofilament M subunit. Induced cultures express transcripts for neural-associated genes including the neurofilament L subunit,glutamate receptor subunits,the transcription factor Brn-3,and GFAP. Levels of neurofilament L and GAD67 and GAD65 transcripts rise dramatically upon induction. Physiological studies show that the neuron-like cells generate action potentials and express TTX-sensitive sodium channels,as well as voltage-gated potassium channels and calcium channels. We conclude that a complex system of neuronal gene expression can be activated in cultured ES cells. This system should be favorable for investigating some of the mechanisms that regulate neuronal differentiation.
View Publication
文献
Martin GR (DEC 1981)
Proceedings of the National Academy of Sciences of the United States of America 78 12 7634--8
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.
This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures,derived from isolated single cells,can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells,or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo,including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.
View Publication
文献
Tidball AM et al. (JUL 2017)
Stem cell reports
Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing.
Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines,we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene,and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines,even in the absence of patient tissue.
View Publication
文献
Hino K et al. (JUL 2017)
The Journal of clinical investigation
Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva.
Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1,a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling,we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A,a molecule that normally transduces TGF-β signaling. Although Activin-A evokes enhanced chondrogenesis in vitro and heterotopic ossification (HO) in vivo,the underlying mechanisms have yet to be revealed. To this end,we developed a high-throughput screening (HTS) system using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) to identify pivotal pathways in enhanced chondrogenesis that are initiated by Activin-A. In a screen of 6,809 small-molecule compounds,we identified mTOR signaling as a critical pathway for the aberrant chondrogenesis of mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs). Two different HO mouse models,an FOP model mouse expressing FOP-ACVR1 and an FOP-iPSC-based HO model mouse,revealed critical roles for mTOR signaling in vivo. Moreover,we identified ENPP2,an enzyme that generates lysophosphatidic acid,as a linker of FOP-ACVR1 and mTOR signaling in chondrogenesis. These results uncovered the crucial role of the Activin-A/FOP-ACVR1/ENPP2/mTOR axis in FOP pathogenesis.
View Publication
文献
Alshawaf AJ et al. ( 2017)
Stem cells international 2017 7848932
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells.
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker,TBR2,and also glial marker,S100β. In contrast,inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers,PAX6 and EAAT1,respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
View Publication