Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells.
Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene,predominantly expressed in the liver. Two compounds that knockdown TTR,comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx),are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background,this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown,siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (textgreater80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds.
View Publication
Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro.
Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated,millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo,in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling,this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis,this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies,as well as providing a source of cells for tissue engineering and cell therapy approaches.
View Publication
Reference
Kim H-R et al. ( 2016)
Cell & bioscience 6 1 50
Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling pathway.
BACKGROUND Aside from its importance in reproduction,estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However,the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs). RESULTS E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER-$$)-dependent pathway. During hematopoietic differentiation of hPSCs,ER-$$ is persistently maintained and hematopoietic phenotypes (CD34 and CD45) were exclusively detected in ER-$$ positive cells. Interestingly,continuous E2 signaling is required to promote hematopoietic output from hPSCs. Supplementation of E2 or an ER-$$ selective agonist significantly increased the number of hemangioblasts and hematopoietic progenitors,and subsequent erythropoiesis,whereas ER-$$ selective agonist did not. Furthermore,ICI 182,780 (ER antagonist) completely abrogated the E2-induced hematopoietic augmentation. Not only from hPSCs but also from human umbilical cord bloods,does E2 signaling potentiate hematopoietic development,suggesting universal function of E2 on hematopoiesis. CONCLUSIONS Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine factors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions.
View Publication
Reference
Gennet N et al. (SEP 2016)
Scientific reports 6 32488
FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.
Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1),a GPI-anchored cell surface molecule,specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a,a bona-fide mesDA lineage marker,during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development,as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3,whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons.
View Publication
Reference
Talavera-Adame D et al. (NOV 2016)
Diabetologia 59 11 2378--2386
Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells.
AIMS/HYPOTHESIS Endothelial cells (ECs) play an essential role in pancreatic organogenesis. We hypothesise that effective in vitro interactions between human microvascular endothelial cells (HMECs) and human pluripotent stem cells (hPSCs) results in the generation of functional pancreatic beta cells. METHODS Embryoid bodies (EBs) derived from hPSCs were cultured alone (controls) or with ECs in collagen gels. Subsequently,cells were analysed for pancreatic beta cell markers,and then isolated and expanded. Insulin secretion in response to glucose was evaluated in vitro by static and dynamic (perifusion) assays,and in vivo by EB transplantation into immunodeficient mice. RESULTS Co-cultured EBs had a higher expression of mature beta cells markers and enhanced insulin secretion in vitro,compared with controls. In mice,transplanted EBs had higher levels of human C-peptide secretion with a significant reduction in hyperglycaemia after the selective destruction of native pancreatic beta cells. In addition,there was significant in vitro upregulation of bone morphogenetic proteins 2 and 4 (BMP-2,4) in co-cultured cells,compared with controls. CONCLUSIONS/INTERPRETATION ECs provide essential signalling in vitro,such as activation of the BMP pathway,for derivation of functional insulin-producing beta cells from hPSCs.
View Publication
Reference
Jia Y-Y et al. (SEP 2016)
Cytometry. Part A : the journal of the International Society for Analytical Cytology 89 9 844--851
Sorting of chromosomes on FACSAria(TM) SORP for the preparation of painting probes.
High purity chromosome sorting can be performed on instruments such as MoFlo MLS and BD influx,which are stream-in-air sorters equipped with water-cooled high power lasers. The FACSAria is a true fixed alignment,low laser powered instrument with a quartz flow cell gel-coupled to the collection optics. However,whether high purity mouse and human chromosomes can be obtained by sorting on the BD FACSAria(TM) Special Order Research Product (FACSAria SORP) remains to be determined. Here,we report that the high resolution flow karyotype of mouse lymphocytes and normal male human peripheral blood mononuclear cells (hPBMCs) can be obtained on the FACSAria SORP using laser power settings of 50 mW for 355 nm and 20 mW for 444 nm excitation. Furthermore,the use of Fluorescence in situ hybridization (FISH) confirmed that chromosome paints prepared from the sorted chromosomes demonstrated high purity and signal specificity. Notably,human chromosome 12 was separated from the chromosome 9-12 cluster in the flow karyotype,and its identity was confirmed using FISH in trisomy 12 human ES cell lines B2-C7 and B2-B8. In addition,multicolor FISH (mFISH) with human chromosome painting probes to 13,18,21,and sex chromosomes X and Y showed high signal specificity in hPBMCs. Taken together,our findings demonstrated that high resolution flow karyotype can be obtained using FACSAria SORP. Moreover,a FISH analysis confirmed high purity of the sorted chromosomes. Additionally,in contrast to centromeric satellite probes,chromosome painting probes with high specificity are more suitable for detection of chromosome aberrations,such as deletions and translocations,in prenatal diagnosis. textcopyright 2016 International Society for Advancement of Cytometry.
View Publication
Reference
Seno A et al. ( 2016)
Cancer informatics 15 163--178
Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map.
We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines,whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4,SOX2,and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1,SOX2,NANOG,LIN28,and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore,with supervised method,sSOM nominated TMED9,RNASE1,NGFR,ST3GAL1,TNS4,BTG2,SLC16A3,CD177,CES1,GDF15,STMN2,FAM20A,NPPB,CD99,MYL7,PRSS23,AHNAK,and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC,suggesting the gene signature of the CSCs.
View Publication
Reference
Yu H et al. (AUG 2016)
Scientific reports 6 31923
Normalization of human RNA-seq experiments using chimpanzee RNA as a spike-in standard.
Normalization of human RNA-seq experiments employing chimpanzee RNA as a spike-in standard is reported. Human and chimpanzee RNAs exhibit single nucleotide variations (SNVs) in average 210-bp intervals. Spike-in chimpanzee RNA would behave the same as the human counterparts during the whole NGS procedures owing to the high sequence similarity. After discrimination of species origins of the NGS reads based on SNVs,the chimpanzee reads were used to read-by-read normalize biases and variations of human reads. By this approach,as many as 10,119 transcripts were simultaneously normalized for the entire NGS procedures leading to accurate and reproducible quantification of differential gene expression. In addition,incomparable data sets from different in-process degradations or from different library preparation methods were made well comparable by the normalization. Based on these results,we expect that the normalization approaches using near neighbor genomes as internal standards could be employed as a standard protocol,which will improve both accuracy and comparability of NGS results across different sample batches,laboratories and NGS platforms.
View Publication
Reference
Qu Y et al. (AUG 2016)
Scientific reports 6 32007
Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs.
Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair,eye,and the mammary gland. In this study,we validate a protocol that utilizes BMP4 and the $$-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGF$$ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGF$$-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development,studying disease pathogenesis,and development of regenerative medicine approaches.
View Publication
Reference
Lang J et al. (SEP 2016)
Stem cell reports 7 3 341--354
Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells.
The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology,partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study,we differentiated human pluripotent stem cells (hPSCs) into hepatocytes,one of the target cells of DENV,to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore,DENV infection activated the NF-$$B pathway,which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions.
View Publication
Reference
Osborn M et al. (AUG 2016)
Stem cells and development
CRISPR/Cas9 Targeted Gene Editing and Cellular Engineering in Fanconi Anemia.
The ability to rationally target disease-causing mutations has been made possible with programmable nucleases with the CRISPR/Cas9 system representing a facile platform for individualized gene-based medicine. In this study we employed footprint free reprogramming of fibroblasts from a patient with mutations to the Fanconi anemia I (FANCI) gene to generate induced pluripotent stem cells (iPSC). This process was accomplished without gene complementation and the resultant iPSC were able to be gene corrected in a robust manner using the Cas9 nickase. The self-renewing iPSC that were maintained under feeder free conditions were differentiated into cells with characteristics of definitive hematopoiesis. This defined and highly efficient procedure employed small molecule modulation of the hematopoietic differentiation pathway and a vascular induction technique to generate hematopoietic progenitors. In sum,our results demonstrate the ability to induce patient derived FA cells to pluripotency for patient specific therapeutic cell derivation.
View Publication
Reference
Vazquez-Arango P et al. (AUG 2016)
Nucleic acids research
Variant U1 snRNAs are implicated in human pluripotent stem cell maintenance and neuromuscular disease.
The U1 small nuclear (sn)RNA (U1) is a multifunctional ncRNA,known for its pivotal role in pre-mRNA splicing and regulation of RNA 3' end processing events. We recently demonstrated that a new class of human U1-like snRNAs,the variant (v)U1 snRNAs (vU1s),also participate in pre-mRNA processing events. In this study,we show that several human vU1 genes are specifically upregulated in stem cells and participate in the regulation of cell fate decisions. Significantly,ectopic expression of vU1 genes in human skin fibroblasts leads to increases in levels of key pluripotent stem cell mRNA markers,including NANOG and SOX2. These results reveal an important role for vU1s in the control of key regulatory networks orchestrating the transitions between stem cell maintenance and differentiation. Moreover,vU1 expression varies inversely with U1 expression during differentiation and cell re-programming and this pattern of expression is specifically de-regulated in iPSC-derived motor neurons from Spinal Muscular Atrophy (SMA) type 1 patient's. Accordingly,we suggest that an imbalance in the vU1/U1 ratio,rather than an overall reduction in Uridyl-rich (U)-snRNAs,may contribute to the specific neuromuscular disease phenotype associated with SMA.
View Publication