Dafinca R et al. (APR 2016)
Stem cells (Dayton,Ohio) 34 8 2016
C9orf72 Hexanucleotide Expansions are Associated with Altered ER Calcium Homeostasis and Stress Granule Formation in iPSC-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS),accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions,differentiated these to functional motor and cortical neurons and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons,decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis,reduced levels of the anti-apoptotic protein Bcl-2,increased endoplasmic reticulum (ER) stress and reduced mitochondrial membrane potential. Furthermore,C9orf72 motor neurons,and also cortical neurons,show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats,which describes a novel pathogenic link between C9orf72 mutations,dysregulation of calcium signalling and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia (FTD). This article is protected by copyright. All rights reserved.
View Publication
Reference
Bao F-XX et al. (APR 2016)
CNS neuroscience & therapeutics 22 8 648--660
Mitochondrial Membrane Potential-dependent Endoplasmic Reticulum Fragmentation is an Important Step in Neuritic Degeneration.
BACKGROUND Neuritic degeneration is an important early pathological step in neurodegeneration. AIM The purpose of this study was to explore the mechanisms connecting neuritic degeneration to the functional and morphological remodeling of endoplasmic reticulum (ER) and mitochondria. METHODS Here,we set up neuritic degeneration models by neurite cutting-induced neural degeneration in human-induced pluripotent stem cell-derived neurons. RESULTS We found that neuritic ER becomes fragmented and forms complexes with mitochondria,which induces IP3R-dependent mitochondrial Ca(2+) elevation and dysfunction during neuritic degeneration. Furthermore,mitochondrial membrane potential is required for ER fragmentation and mitochondrial Ca(2+) elevation during neuritic degeneration. Mechanically,tightening of the ER-mitochondria associations by expression of a short synthetic linker" and ER Ca(2+) releasing together could promote mitochondrial Ca(2+) elevation�
View Publication
Reference
Nekrasov ED et al. (DEC 2016)
Molecular Neurodegeneration 11 1 1--15
Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons.
Background: Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder,which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD,existing pharmaceutical can only relieve its symptoms. Results: Here,induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene,and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro,as evidenced by mutant huntingtin protein aggregation,increased number of lysosomes/autophagosomes,nuclear indentations,and enhanced neuronal death during cell aging. Moreover,store-operated channel (SOC) currents were detected in the differentiated neurons,and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally,the quinazoline derivative,EVP4593,reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging. Conclusions: Our data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks,providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug. [ABSTRACT FROM AUTHOR]
View Publication
Reference
Singh AM et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing.
Pluripotent stem cells exhibit cell cycle-regulated heterogeneity for trimethylation of histone-3 on lysine-4 (H3K4me3) on developmental gene promoters containing bivalent epigenetic domains. The heterogeneity of H3K4me3 can be attributed to Cyclin-dependent kinase-2 (CDK2) phosphorylation and activation of the histone methyltransferase,MLL2 (KMT2B),during late-G1. The deposition of H3K4me3 on developmental promoters in late-G1 establishes a permissive chromatin architecture that enables signaling cues to promote differentiation from the G1 phase. These data suggest that the inhibition of MLL2 phosphorylation and activation will prevent the initiation of differentiation. Here,we describe a method to seamlessly modify a putative CDK2 phosphorylation site on MLL2 to restrict its phosphorylation and activation. Specifically,by utilizing dimeric CRISPR RNA-guided nucleases,RFNs (commercially known as the NextGEN™ CRISPR),in combination with an excision-only piggyBac™ transposase,we demonstrate how to generate a point mutation of threonine-542,a predicted site to prevent MLL2 activation. This gene editing method enables the use of both positive and negative selection,and allows for subsequent removal of the donor cassette without leaving behind any unwanted DNA sequences or modifications. This seamless donor-excision" approach provides clear advantages over using single stranded oligo-deoxynucleotides (ssODN) as donors to create point mutations�
View Publication
Reference
Patel R and Alahmad AJ ( 2016)
Fluids and barriers of the CNS 13 6
BACKGROUND Patient-derived induced pluripotent stem cells (iPSCs) are an innovative source as an in vitro model for neurological diseases. Recent studies have demonstrated the differentiation of brain microvascular endothelial cells (BMECs) from various stem cell sources,including iPSC lines. However,the impact of the culturing conditions used to maintain such stem cell pluripotency on their ability to differentiate into BMECs remains undocumented. In this study,we investigated the effect of different sources of Matrigel and stem cell maintenance medium on BMEC differentiation efficiency. METHODS The IMR90-c4 iPSC line was maintained on mTeSR1 or in essential-8 (E-8) medium on growth factor-reduced (GFR) Matrigel from three different manufacturers. Cells were differentiated into BMECs following published protocols. The phenotype of BMEC monolayers was assessed by immunocytochemistry. Barrier function was assessed by transendothelial electrical resistance (TEER) and permeability to sodium fluorescein,whereas the presence of drug efflux pumps was assessed by uptake assay using fluorescent substrates. RESULTS Stem cell maintenance medium had little effect on the yield and barrier phenotype of IMR90-derived BMECs. The source of GFR-Matrigel used for the differentiation process significantly impacted the ability of IMR90-derived BMECs to form tight monolayers,as measured by TEER and fluorescein permeability. However,the Matrigel source had minimal effect on BMEC phenotype and drug efflux pump activity. CONCLUSION This study supports the ability to differentiate BMECs from iPSCs grown in mTeSR1 or E-8 medium and also suggests that the origin of GFR-Matrigel has a marked inpact on BMEC barrier properties.
View Publication
Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival
Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP),we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region and binding site levels,IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3' UTR-enriched targets. RNA Bind-N-seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes,including a reduction in cell adhesion and increase in cell death. For cell adhesion,we find IMP1 maintains levels of integrin mRNA specifically regulating RNA stability of ITGB5 in hPSCs. Additionally,we show that IMP1 can be linked to hPSC survival via direct target BCL2. Thus,transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.
View Publication
Reference
Cui D et al. (APR 2016)
Bioscience,biotechnology,and biochemistry 80 8 1--8
Generating hESCs with reduced immunogenicity by disrupting TAP1 or TAPBP.
Human embryonic stem cells (hESCs) are thought to be a promising resource for cell therapy,while it has to face the major problem of graft immunological rejection. Major histocompatibility complex (MHC) class I expressed on the cell surface is the major cause of graft rejection. Transporter associated with antigen presentation 1 (TAP1) and TAP-associated glycoprotein (TAPBP) play important roles in regulating MHC class I expression. In this study,we generated TAP1- and TAPBP-deficient hESC lines,respectively,using transcription activator-like effector nucleases technique. These cells showed deficient expression of MHC class I on the cell surface and reduced immunogenicity compared with wild types,but maintained normal pluripotency,karyotypes,and differentiation ability. Thus,our findings are instrumental in developing a universal cell resource with both pluripotency and hypo-immunogenicity for transplantation therapy in the future.
View Publication
Reference
Saxena P et al. ( 2016)
Nature communications 7 11247
A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells.
Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid,we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3,Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells,whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine.
View Publication
Reference
Kwok CTD et al. (MAR 2016)
Stem Cell Research 16 3 651--661
The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells
Human embryonic stem cells (hESCs) exhibit unique cell cycle structure,self-renewal and pluripotency. The Forkhead box transcription factor M1 (FOXM1) is critically required for the maintenance of pluripotency in mouse embryonic stem cells and mouse embryonal carcinoma cells,but its role in hESCs remains unclear. Here,we show that FOXM1 expression was enriched in undifferentiated hESCs and was regulated in a cell cycle-dependent manner with peak levels detected at the G2/M phase. Expression of FOXM1 did not correlate with OCT4 and NANOG during in vitro differentiation of hESCs. Importantly,knockdown of FOXM1 expression led to aberrant cell cycle distribution with impairment in mitotic progression but showed no profound effect on the undifferentiated state. Interestingly,FOXM1 depletion sensitized hESCs to oxidative stress. Moreover,genome-wide analysis of FOXM1 targets by ChIP-seq identified genes important for M phase including CCNB1 and CDK1,which were subsequently confirmed by ChIP and RNA interference analyses. Further peak set comparison against a differentiating hESC line and a cancer cell line revealed a substantial difference in the genomic binding profile of FOXM1 in hESCs. Taken together,our findings provide the first evidence to support FOXM1 as an important regulator of cell cycle progression and defense against oxidative stress in hESCs.
View Publication
Reference
Carpentier A et al. (MAR 2016)
Stem Cell Research 16 3 640--650
Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen
The establishment of protocols to differentiate human pluripotent stem cells (hPSCs) including embryonic (ESC) and induced pluripotent (iPSC) stem cells into functional hepatocyte-like cells (HLCs) creates new opportunities to study liver metabolism,genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses) in the context of specific genetic background. While supporting efficient differentiation to HLCs,the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells,which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation,metabolism,genetic network,and response to infection or other external stimuli.
View Publication
Reference
Christoffersson J et al. (APR 2016)
Methods in molecular biology (Clifton,N.J.)
A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.
Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here,we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging.
View Publication
Reference
Costa V et al. (APR 2016)
Cell reports 15 1 86--95
mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis.
Hyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD),including tuberous sclerosis,caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here,we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells. Homozygous TSC2 deletion causes severe developmental abnormalities that recapitulate pathological hallmarks of cortical malformations in patients. Both TSC2(+/-) and TSC2(-/-) neurons display altered synaptic transmission paralleled by molecular changes in pathways associated with autism,suggesting the convergence of pathological mechanisms in ASD. Pharmacological inhibition of mTORC1 corrects developmental abnormalities and synaptic dysfunction during independent developmental stages. Our results uncouple stage-specific roles of mTORC1 in human neuronal development and contribute to a better understanding of the onset of neuronal pathophysiology in tuberous sclerosis.
View Publication