Marshall LJ et al. (DEC 2010)
The Journal of general virology 91 Pt 12 3042--52
Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity.
Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys,lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development,transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor,Spi-B,binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly,mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells,and may play an important role in JCV activity in the immune and nervous systems.
View Publication
Kondo A et al. (AUG 2010)
Blood 116 7 1124--31
Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes.
During disease progression in myelodysplastic syndromes (MDS),clonal blasts gain a more aggressive nature,whereas nonclonal immune cells become less efficient via an unknown mechanism. Using MDS cell lines and patient samples,we showed that the expression of an immunoinhibitory molecule,B7-H1 (CD274),was induced by interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) on MDS blasts. This induction was associated with the activation of nuclear factor-kappaB (NF-kappaB) and nearly completely blocked by an NF-kappaB inhibitor,pyrrolidine dithiocarbamate (PDTC). B7-H1(+) MDS blasts had greater intrinsic proliferative capacity than B7-H1(-) MDS blasts when examined in various assays. Furthermore,B7-H1(+) blasts suppressed T-cell proliferation and induced T-cell apoptosis in allogeneic cocultures. When fresh bone marrow samples from patients were examined,blasts from high-risk MDS patients expressed B7-H1 molecules more often compared with those from low-risk MDS patients. Moreover,MDS T cells often overexpressed programmed cell death 1 (PD-1) molecules that transmit an inhibitory signal from B7-H1 molecules. Taken together,these findings provide new insight into MDS pathophysiology. IFNgamma and TNFalpha activate NF-kappaB that in turn induces B7-H1 expression on MDS blasts. B7-H1(+) MDS blasts have an intrinsic proliferative advantage and induce T-cell suppression,which may be associated with disease progression in MDS.
View Publication
Li H et al. (AUG 2010)
Blood 116 7 1060--9
Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development.
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells,T cells,neutrophils,and for the maintenance of hematopoietic stem cell function. However,the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here,we provide evidence that Id2 is a transcriptional target of Gfi-1,and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors,myeloid progenitors,T-cell progenitors,and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
View Publication
Gerrits A et al. (APR 2010)
Blood 115 13 2610--8
Cellular barcoding tool for clonal analysis in the hematopoietic system.
Clonal analysis is important for many areas of hematopoietic stem cell research,including in vitro cell expansion,gene therapy,and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle,they generally provide a low-resolution,biased,and incomplete assessment of clonality. To overcome those limitations,we labeled retroviral vectors with random sequence tags or barcodes." On integration�
View Publication
Volanakis EJ et al. (NOV 2009)
Blood 114 20 4451--9
Stage-specific Arf tumor suppression in Notch1-induced T-cell acute lymphoblastic leukemia.
Frequent hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) include aberrant NOTCH signaling and deletion of the CDKN2A locus,which contains 2 closely linked tumor suppressor genes (INK4A and ARF). When bone marrow cells or thymocytes transduced with a vector encoding the constitutively activated intracellular domain of Notch1 (ICN1) are expanded ex vivo under conditions that support T-cell development,cultured progenitors rapidly induce CD4+/CD8+ T-ALLs after infusion into healthy syngeneic mice. Under these conditions,enforced ICN1 expression also drives formation of T-ALLs in unconditioned CD-1 nude mice,bypassing any requirements for thymic maturation. Retention of Arf had relatively modest activity in suppressing the formation of T-ALLs arising from bone marrow-derived ICN1+ progenitors in which the locus is epigenetically silenced,and all resulting Arf (+/+) tumors failed to express the p19(Arf) protein. In striking contrast,retention of Arf in thymocyte-derived ICN1+ donor cells significantly delayed disease onset and suppressed the penetrance of T-ALL. Use of cultured thymocyte-derived donor cells expressing a functionally null Arf-GFP knock-in allele confirmed that ICN1 signaling can induce Arf expression in vivo. Arf activation by ICN1 in T cells thereby provides stage-specific tumor suppression but also a strong selective pressure for deletion of the locus in T-ALL.
View Publication
Heinonen KM et al. (JUN 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 23 9368--72
Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-gamma signaling.
The control of tyrosine phosphorylation depends on the fine balance between kinase and phosphatase activities. Protein tyrosine phosphatase 1B (PTP-1B) and T cell protein tyrosine phosphatase (TC-PTP) are 2 closely related phosphatases known to control cytokine signaling. We studied the functional redundancy of PTP-1B and TC-PTP by deleting 1 or both copies of these genes by interbreeding TC-PTP and PTP-1B parental lines. Our results indicate that the double mutant (tcptp(-/-)ptp1b(-/-)) is lethal at day E9.5-10.5 of embryonic development with constitutive phosphorylation of Stat1. Mice heterozygous for TC-PTP on a PTP-1B-deficient background (tcptp(+/-)ptp1b(-/-)) developed signs of inflammation. Macrophages from these animals were highly sensitive to IFN-gamma,as demonstrated by increased Stat1 phosphorylation and nitric oxide production. In addition,splenic T cells demonstrated increased IFN-gamma secretion capacity. Mice with deletions of single copies of TC-PTP and PTP-1B (tcptp(+/-)ptp1b(+/-)) exhibited normal development,confirming that these genes are not interchangeable. Together,these data indicate a nonredundant role for PTP-1B and TC-PTP in the regulation of IFN signaling.
View Publication
Stern P et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 37 13895--900
A system for Cre-regulated RNA interference in vivo.
We report a system for Cre-regulated expression of RNA interference in vivo. Expression cassettes comprise selectable and FACS-sortable markers in tandem with additional marker genes and shRNAs in the antisense orientation. The cassettes are flanked by tandem LoxP sites arranged so that Cre expression inverts the marker-shRNA construct,allowing its regulated expression (and,at the same time,deletes the original selection/marker genes). The cassettes can be incorporated into retroviral or lentiviral vectors and delivered to cells in culture or used to generate transgenic mice. We describe cassettes incorporating various combinations of reporter genes,miRNA-based RNAi (including two shRNA constructs at once),and oncogenes and demonstrate the delivery of effective RNA interference in cells in culture,efficient transduction into hematopoietic stem cells with cell-type-specific knockdown in their progeny,and rapid generation of regulated shRNA knockdown in transgenic mice. These vector systems allow regulated combinatorial manipulation (both overexpression and loss of function) of gene expression in multiple systems in vitro and in vivo.
View Publication
Giassi LJ et al. (AUG 2008)
Experimental biology and medicine (Maywood,N.J.) 233 8 997--1012
Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation,we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells,cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid,B-lymphoid,and erythroid lineages,but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization,which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.
View Publication
Crist SA et al. (APR 2008)
Blood 111 7 3553--61
Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes.
Platelets are an abundant source of CD40 ligand (CD154),an immunomodulatory and proinflammatory molecule implicated in the onset and progression of several inflammatory diseases,including systemic lupus erythematosus (SLE),diabetes,and cardiovascular disease. Heretofore considered largely restricted to activated T cells,we initiated studies to investigate the source and regulation of platelet-associated CD154. We found that CD154 is abundantly expressed in platelet precursor cells,megakaryocytes. We show that CD154 is expressed in primary human CD34+ and murine hematopoietic precursor cells only after cytokine-driven megakaryocyte differentiation. Furthermore,using several established megakaryocyte-like cells lines,we performed promoter analysis of the CD154 gene and found that NFAT,a calcium-dependent transcriptional regulator associated with activated T cells,mediated both differentiation-dependent and inducible megakaryocyte-specific CD154 expression. Overall,these data represent the first investigation of the regulation of a novel source of CD154 and suggests that platelet-associated CD154 can be biochemically modulated.
View Publication
Mariotti J et al. (JAN 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 1 89--105
Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection.
Because ex vivo rapamycin generates murine Th2 cells that prevent Graft-versus-host disease more potently than control Th2 cells,we hypothesized that rapamycin would generate Th2/Tc2 cells (Th2/Tc2.R cells) that abrogate fully MHC-disparate hemopoietic stem cell rejection more effectively than control Th2/Tc2 cells. In a B6-into-BALB/c graft rejection model,donor Th2/Tc2.R cells were indeed enriched in their capacity to prevent rejection; importantly,highly purified CD4+ Th2.R cells were also highly efficacious for preventing rejection. Rapamycin-generated Th2/Tc2 cells were less likely to die after adoptive transfer,accumulated in vivo at advanced proliferative cycles,and were present in 10-fold higher numbers than control Th2/Tc2 cells. Th2.R cells had a multifaceted,apoptosis-resistant phenotype,including: 1) reduced apoptosis after staurosporine addition,serum starvation,or CD3/CD28 costimulation; 2) reduced activation of caspases 3 and 9; and 3) increased anti-apoptotic Bcl-xL expression and reduced proapoptotic Bim and Bid expression. Using host-versus-graft reactivity as an immune correlate of graft rejection,we found that the in vivo efficacy of Th2/Tc2.R cells 1) did not require Th2/Tc2.R cell expression of IL-4,IL-10,perforin,or Fas ligand; 2) could not be reversed by IL-2,IL-7,or IL-15 posttransplant therapy; and 3) was intact after therapy with Th2.R cells relatively devoid of Foxp3 expression. We conclude that ex vivo rapamycin generates Th2 cells that are resistant to apoptosis,persist in vivo,and effectively prevent rejection by a mechanism that may be distinct from previously described graft-facilitating T cells.
View Publication
Heinzel K et al. (JAN 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 2 858--68
Bone marrow-derived hemopoietic precursors commit to the T cell lineage only after arrival in the thymic microenvironment.
T lymphocytes develop in the thymus from hemopoietic precursors that commit to the T cell lineage under the influence of Notch signals. In this study,we show by single cell analyses that the most immature hemopoietic precursors in the adult mouse thymus are uncommitted and specify to the T cell lineage only after their arrival in the thymus. These precursors express high levels of surface Notch receptors and rapidly lose B cell potential upon the provision of Notch signals. Using a novel culture system with complexed,soluble Notch ligands that allows the titration of T cell lineage commitment,we find that these precursors are highly sensitive to both Delta and Jagged ligands. In contrast,their phenotypical and functional counterparts in the bone marrow are resistant to Notch signals that efficiently induce T cell lineage commitment in thymic precursors. Mechanistically,this is not due to differences in receptor expression,because early T lineage precursors,bone marrow lineage marker-negative,Sca-1-positive,c-Kit-positive and common lymphoid progenitor cells,express comparable amounts of surface Notch receptors. Our data demonstrate that the sensitivity to Notch-mediated T lineage commitment is stage-dependent and argue against the bone marrow as the site of T cell lineage commitment.
View Publication
Maes C et al. (MAY 2006)
The Journal of clinical investigation 116 5 1230--42
Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair.
Current therapies for delayed- or nonunion bone fractures are still largely ineffective. Previous studies indicated that the VEGF homolog placental growth factor (PlGF) has a more significant role in disease than in health. Therefore we investigated the role of PlGF in a model of semi-stabilized bone fracture healing. Fracture repair in mice lacking PlGF was impaired and characterized by a massive accumulation of cartilage in the callus,reminiscent of delayed- or nonunion fractures. PlGF was required for the early recruitment of inflammatory cells and the vascularization of the fracture wound. Interestingly,however,PlGF also played a role in the subsequent stages of the repair process. Indeed in vivo and in vitro findings indicated that PlGF induced the proliferation and osteogenic differentiation of mesenchymal progenitors and stimulated cartilage turnover by particular MMPs. Later in the process,PlGF was required for the remodeling of the newly formed bone by stimulating osteoclast differentiation. As PlGF expression was increased throughout the process of bone repair and all the important cell types involved expressed its receptor VEGFR-1,the present data suggest that PlGF is required for mediating and coordinating the key aspects of fracture repair. Therefore PlGF may potentially offer therapeutic advantages for fracture repair.
View Publication