Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment.
Hematopoiesis is maintained by specific interactions between both hematopoietic and nonhematopoietic cells. Whereas hematopoietic stem cells (HSCs) have been extensively studied both in vitro and in vivo,little is known about the in vivo characteristics of stem cells of the nonhematopoietic component,known as mesenchymal stem cells (MSCs). Here we have visualized and characterized human MSCs in vivo following intramedullary transplantation of enhanced green fluorescent protein-marked human MSCs (eGFP-MSCs) into the bone marrow (BM) of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Between 4 to 10 weeks after transplantation,eGFP-MSCs that engrafted in murine BM integrated into the hematopoietic microenvironment (HME) of the host mouse. They differentiated into pericytes,myofibroblasts,BM stromal cells,osteocytes in bone,bone-lining osteoblasts,and endothelial cells,which constituted the functional components of the BM HME. The presence of human MSCs in murine BM resulted in an increase in functionally and phenotypically primitive human hematopoietic cells. Human MSC-derived cells that reconstituted the HME appeared to contribute to the maintenance of human hematopoiesis by actively interacting with primitive human hematopoietic cells.
View Publication
Bui KCT et al. (FEB 2010)
American journal of respiratory and critical care medicine 181 3 226--37
Recovery of multipotent progenitors from the peripheral blood of patients requiring extracorporeal membrane oxygenation support.
RATIONALE: Studies have demonstrated that bone marrow-derived cells can be recruited to injured lungs through an unknown mechanism. We hypothesize that marrow progenitors are mobilized into the circulation of patients with cardiac and/or respiratory failure,and may then traffic to and incorporate into the sites of tissue injury. OBJECTIVES: To determine whether progenitor populations are increased in the blood of patients with severe acute cardiorespiratory failure placed on extracorporeal membrane oxygenation (ECMO). METHODS: Mononuclear cells from ECMO,umbilical cord,and control blood samples were evaluated in colony-forming assays for hematopoietic,mesenchymal,and epithelial cells. Progenitors were identified by proliferative and differentiative capacities,and confirmed by the expression of lineage-specific markers. MEASUREMENTS AND MAIN RESULTS: Significantly higher levels of hematopoietic progenitors were observed in ECMO (n = 41) samples than neonatal intensive care unit (n = 16) or pediatric intensive care unit controls (n = 14). Hematopoietic progenitor mobilization increased with time on ECMO support. Mesenchymal progenitors (MSC) were recovered from 18/58 ECMO samples with rapid sample processing (textless 4 h) critical to their recovery. MSC were not recovered from normal controls. ECMO-derived MSC had osteogenic,chondrogenic,and adipogenic differentiation potential. The recovery of MSC did not influence survival outcome (61%). Epithelial progenitors were observed in eight ECMO samples but not in control samples. Their presence was associated with a lower survival trend (38%). CONCLUSIONS: Hematopoietic,mesenchymal,and epithelial progenitors were mobilized into the circulation of patients on ECMO. This may reflect a response to severe cardiopulmonary injury,blood-foreign surface interactions with the ECMO circuit,and/or hemodilution.
View Publication
Zhou L et al. (FEB 2011)
Cancer research 71 3 955--63
Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase.
Even though myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis,the molecular alterations that lead to marrow failure have not been well elucidated. We have previously shown that the myelosuppressive TGF-β pathway is constitutively activated in MDS progenitors. Because there is conflicting data about upregulation of extracellular TGF-β levels in MDS,we wanted to determine the molecular basis of TGF-β pathway overactivation and consequent hematopoietic suppression in this disease. We observed that SMAD7,a negative regulator of TGF-β receptor I (TBRI) kinase,is markedly decreased in a large meta-analysis of gene expression studies from MDS marrow-derived CD34(+) cells. SMAD7 protein was also found to be significantly decreased in MDS marrow progenitors when examined immunohistochemically in a bone marrow tissue microarray. Reduced expression of SMAD7 in hematopoietic cells led to increased TGF-β-mediated gene transcription and enhanced sensitivity to TGF-β-mediated suppressive effects. The increased TGF-β signaling due to SMAD7 reduction could be effectively inhibited by a novel clinically relevant TBRI (ALK5 kinase) inhibitor,LY-2157299. LY-2157299 could inhibit TGF-β-mediated SMAD2 activation and hematopoietic suppression in primary hematopoietic stem cells. Furthermore,in vivo administration of LY-2157299 ameliorated anemia in a TGF-β overexpressing transgenic mouse model of bone marrow failure. Most importantly,treatment with LY-2157199 stimulated hematopoiesis from primary MDS bone marrow specimens. These studies demonstrate that reduction in SMAD7 is a novel molecular alteration in MDS that leads to ineffective hematopoiesis by activating of TGF-β signaling in hematopoietic cells. These studies also illustrate the therapeutic potential of TBRI inhibitors in MDS.
View Publication
Takemura T et al. (FEB 2010)
The Journal of biological chemistry 285 9 6585--94
Reduction of Raf kinase inhibitor protein expression by Bcr-Abl contributes to chronic myelogenous leukemia proliferation.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl-transformed cells,and Ras activity enhances the oncogenic ability of Bcr-Abl. However,the mechanism by which Bcr-Abl activates the Ras pathway is not completely understood. Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction,resulting in blocking the MAP kinase pathway. In the present study,we found that RKIP was depleted in CML cells. We investigated the interaction between RKIP and Bcr-Abl in CML cell lines and Bcr-Abl(+) progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of RKIP and reduced the pERK1/2 status,resulting in inhibited proliferation of CML cells. Moreover,RKIP up-regulated cell cycle regulator FoxM1 expression,resulting in G(1) arrest via p27(Kip1) and p21(Cip1) accumulation. In colony-forming unit granulocyte,erythroid,macrophage,megakaryocyte,colony-forming unit-granulocyte macrophage,and burst-forming unit erythroid,treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced RKIP and reduced FoxM1 expressions,and inhibited colony formation of Bcr-Abl(+) progenitor cells,whereas depletion of RKIP weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl(+) progenitor cells. Thus,Bcr-Abl represses the expression of RKIP,continuously activates pERK1/2,and suppresses FoxM1 expression,resulting in proliferation of CML cells.
View Publication
Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here,we show that MLL normally regulates expression of mir-196b,a hematopoietic microRNA located within the HoxA cluster,in a pattern similar to that of the surrounding 5' Hox genes,Hoxa9 and Hoxa10,during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage,mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells. Leukemogenic MLL fusion proteins cause overexpression of mir-196b,while treatment of MLL-AF9 transformed bone marrow cells with mir-196-specific antagomir abrogates their replating potential in methylcellulose. This demonstrates that mir-196b function is necessary for MLL fusion-mediated immortalization. Furthermore,overexpression of mir-196b was found specifically in patients with MLL associated leukemias as determined from analysis of 55 primary leukemia samples. Overexpression of mir-196b in bone marrow progenitor cells leads to increased proliferative capacity and survival,as well as a partial block in differentiation. Our results suggest a mechanism whereby increased expression of mir-196b by MLL fusion proteins significantly contributes to leukemia development.
View Publication
Ong CHP et al. (DEC 2006)
American journal of physiology. Regulatory,integrative and comparative physiology 291 6 R1602--12
Regulation of progranulin expression in myeloid cells.
Progranulin (pgrn; granulin-epithelin precursor,PC-cell-derived growth factor,or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis,development,inflammation,and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO,and,in U-937 only,phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation,suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937,ATRA and chemical differentiation agents greatly increased pgrn mRNA stability,whereas,in HL-60,ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937,whereas in U-937 it blocked PMA-induced pgrn mRNA expression,suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.
View Publication
Kandilci A and Grosveld GC (AUG 2009)
Blood 114 8 1596--606
Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation.
Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid-induced granulocytic differentiation. Here,we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34(+) hematopoietic cells,lineage-depleted mouse bone marrow cells,and bipotential (granulocytic/monocytic) human acute myeloid leukemia cell lines. We show that exogenous MN1 stimulated the growth of CD34(+) cells,which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and acute myeloid leukemia cell lines. Endogenous MN1 expression was higher in human CD34(+) cells compared with both primary and in vitro-differentiated monocytes and granulocytes. Microarray and real-time reverse-transcribed polymerase chain reaction analysis of MN1-overexpressing CD34(+) cells showed down-regulation of CEBPA and its downstream target genes. Reintroduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down-regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells.
View Publication