Bruin JE et al. (JAN 2014)
Stem Cell Research 12 1 194--208
Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells.
Human embryonic stem cells (hESCs) were used as a model system of human pancreas development to study characteristics of the polyhormonal cells that arise during fetal pancreas development. HESCs were differentiated into fetal-like pancreatic cells in vitro using a 33-day,7-stage protocol. Cultures were ˜90-95% PDX1-positive by day (d) 11 and 70-75% NKX6.1-positive by d17. Polyhormonal cells were scattered at d17,but developed into islet-like clusters that expressed key transcription factors by d33. Human C-peptide and glucagon secretion were first detected at d17 and increased thereafter in parallel with INS and GCG transcript levels. HESC-derived cells were responsive to KCl and arginine,but not glucose in perifusion studies. Compared to adult human islets,hESC-derived cells expressed ˜10-fold higher levels of glucose transporter 1 (GLUT1) mRNA,but similar levels of glucokinase (GCK). In situ hybridization confirmed the presence of GLUT1 transcript within endocrine cells. However,GLUT1 protein was excluded from this population and was instead observed predominantly in non-endocrine cells,whereas GCK was co-expressed in insulin-positive cells. In rubidium efflux assays,hESC-derived cells displayed mild potassium channel activity,but no responsiveness to glucose,metabolic inhibitors or glibenclamide. Western blotting experiments revealed that the higher molecular weight SUR1 band was absent in hESC-derived cells,suggesting a lack of functional KATP channels at the cell surface. In addition,KATP channel subunit transcript levels were not at a 1:1 ratio,as would be expected (SUR1 levels were ˜5-fold lower than KIR6.2). Various ratios of SUR1:KIR6.2 plasmids were transfected into COSM6 cells and rubidium efflux was found to be particularly sensitive to a reduction in SUR1. These data suggest that an impaired ratio of SUR1:KIR6.2 may contribute to the observed KATP channel defects in hESC-derived islet endocrine cells,and along with lack of GLUT1,may explain the absence of glucose-stimulated insulin secretion.?? 2013 Elsevier B.V.
View Publication
Goldman FD et al. (MAY 2008)
Blood 111 9 4523--31
Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita.
Dyskeratosis congenita (DC) is an inherited bone marrow (BM) failure syndrome associated with mutations in telomerase genes and the acquisition of shortened telomeres in blood cells. To investigate the basis of the compromised hematopoiesis seen in DC,we analyzed cells from granulocyte colony-stimulating factor mobilized peripheral blood (mPB) collections from 5 members of a family with autosomal dominant DC with a hTERC mutation. Premobilization BM samples were hypocellular,and percentages of CD34(+) cells in marrow and mPB collections were significantly below values for age-matched controls in 4 DC subjects. Directly clonogenic cells,although present at normal frequencies within the CD34(+) subset,were therefore absolutely decreased. In contrast,even the frequency of long-term culture-initiating cells within the CD34(+) DC mPB cells was decreased,and the telomere lengths of these cells were also markedly reduced. Nevertheless,the different lineages of mature cells were produced in normal numbers in vitro. These results suggest that marrow failure in DC is caused by a reduction in the ability of hematopoietic stem cells to sustain their numbers due to telomere impairment rather than a qualitative defect in their commitment to specific lineages or in the ability of their lineage-restricted progeny to execute normal differentiation programs.
View Publication
Pineault N et al. (JUN 2008)
Stem cells and development 17 3 483--93
Characterization of the effects and potential mechanisms leading to increased megakaryocytic differentiation under mild hyperthermia.
The physical culture parameters have important influences on the proliferation and differentiation fate of hematopoietic stem cells. Recently,we have demonstrated that CD34+ cord blood (CB) cells undergo accelerated and increased megakaryocyte (Mk) differentiation when incubated under mild hyperthermic conditions (i.e.,39 degrees C). In this study,we investigated in detail the impacts of mild hyperthermia on Mk differentiation and maturation,and explored potential mechanisms responsible for these phenomena. Our results demonstrate that the qualitative and quantitative effects on Mk differentiation at 39 degrees C appear rapidly within 7 days,and that early transient culture at 39 degrees C led to even greater Mk yields (ptextless0.03). Surprisingly,cell viability was only found to be significantly reduced in the early stages of culture,suggesting that CB cells are able with time to acclimatize themselves to 39 degrees C. Although mild hyperthermia accelerated differentiation and maturation of CB-derived Mks,it failed to promote their polyploidization further but rather led to a small reduction in the proportion of polyploid Mks (p=0.01). Conversely,gene arrays analysis demonstrated that Mks derived at 39 degrees C have a normal gene expression program consistent with an advanced maturation state. Finally,two independent mechanisms that could account for the accelerated Mk differentiation were investigated. Our results suggest that the accelerated and increased Mk differentiation induced by mild hyperthermia is not mediated by cell-secreted factors but could perhaps be mediated by the increased expression of Mk transcription factors.
View Publication
Au KF et al. (DEC 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 50 E4821----30
Characterization of the human ESC transcriptome by hybrid sequencing.
Although transcriptional and posttranscriptional events are detected in RNA-Seq data from second-generation sequencing,full-length mRNA isoforms are not captured. On the other hand,third-generation sequencing,which yields much longer reads,has current limitations of lower raw accuracy and throughput. Here,we combine second-generation sequencing and third-generation sequencing with a custom-designed method for isoform identification and quantification to generate a high-confidence isoform dataset for human embryonic stem cells (hESCs). We report 8,084 RefSeq-annotated isoforms detected as full-length and an additional 5,459 isoforms predicted through statistical inference. Over one-third of these are novel isoforms,including 273 RNAs from gene loci that have not previously been identified. Further characterization of the novel loci indicates that a subset is expressed in pluripotent cells but not in diverse fetal and adult tissues; moreover,their reduced expression perturbs the network of pluripotency-associated genes. Results suggest that gene identification,even in well-characterized human cell lines and tissues,is likely far from complete.
View Publication
Xu M et al. ( 2017)
Cell & bioscience 7 3
Characterization of tubular liquid crystal structure in embryonic stem cell derived embryoid bodies.
BACKGROUND Massive liquid crystal droplets have been found during embryonic development in more than twenty different tissues and organs,including the liver,brain and kidney. Liquid crystal deposits have also been identified in multiple human pathologies,including vascular disease,liver dysfunction,age-related macular degeneration,and other chronic illnesses. Despite the involvement of liquid crystals in such a large number of human processes,this phenomenon is poorly understood and there are no in vitro systems to further examine the function of liquid crystals in biology. RESULTS We report the presence of tubular birefringent structures in embryoid bodies (EBs) differentiated in culture. These birefringent tubular structures initiate at the EB surface and penetrated the cortex at a variety of depths. Under crossed polarized light,these tubules are seen as a collection of birefringent Maltese crosses and tubules with birefringent walls and a non-birefringent lumen. The fluidity of these birefringent structures under pressure application led to elongation and widening,which was partially recoverable with pressure release. These birefringent structures also displayed heat triggered phase transition from liquid crystal to isotropic status that is partially recoverable with return to ambient temperature. These pressure and temperature triggered changes confirm the birefringent structures as liquid crystals. The first report of liquid crystal so early in development. CONCLUSION The structure of the liquid crystal tubule network we observed distributed throughout the differentiated embryoid bodies may function as a transportation network for nutrients and metabolic waste during EB growth,and act as a precursor to the vascular system. This observation not only reveals the involvement of liquid crystals earlier than previously known,but also provides a method for studying liquid crystals in vitro.
View Publication
Ben-David U and Benvenisty N (MAR 2014)
Nature protocols 9 3 729--740
Chemical ablation of tumor-initiating human pluripotent stem cells.
The tumorigenicity of human pluripotent stem cells (hPSCs) is widely acknowledged as a major obstacle that withholds their application in regenerative medicine. This protocol describes two efficient and robust ways to chemically eliminate the tumor-initiating hPSCs from monolayer culture. The protocol details how to maintain and differentiate hPSCs,how to apply chemical inhibitors to cultures of hPSCs and their differentiated progeny,and how to assess the purity of the resultant cell cultures using in vitro and in vivo assays. It also describes how to rescue the cytotoxic effect. The elimination and the rescue assay can be completed within 3-5 d,the in vitro assessment requires another day,and the in vivo assessment requires up to 12 additional weeks.
View Publication
Hassane DC et al. (DEC 2010)
Blood 116 26 5983--90
Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways.
We have previously shown that the plant-derived compound parthenolide (PTL) can impair the survival and leukemogenic activity of primary human acute myeloid leukemia (AML) stem cells. However,despite the activity of this agent,PTL also induces cellular protective responses that likely function to reduce its overall cytotoxicity. Thus,we sought to identify pharmacologic agents that enhance the antileukemic potential of PTL. Toward this goal,we used the gene expression signature of PTL to identify compounds that inhibit cytoprotective responses by performing chemical genomic screening of the Connectivity Map database. This screen identified compounds acting along the phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways. Compared with single agent treatment,exposure of AML cells to the combination of PTL and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors significantly decreased viability of AML cells and reduced tumor burden in vitro and in murine xenotransplantation models. Taken together,our data show that rational drug combinations can be identified using chemical genomic screening strategies and that inhibition of cytoprotective functions can enhance the eradication of primary human AML cells.
View Publication
Chen G et al. (MAY 2011)
Nature methods 8 5 424--9
Chemically defined conditions for human iPSC derivation and culture.
We re-examine the individual components for human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) culture and formulate a cell culture system in which all protein reagents for liquid media,attachment surfaces and splitting are chemically defined. A major improvement is the lack of a serum albumin component,as variations in either animal- or human-sourced albumin batches have previously plagued human ESC and iPSC culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces,we demonstrate improved derivation efficiencies of vector-free human iPSCs with an episomal approach. This simplified E8 medium should facilitate both the research use and clinical applications of human ESCs and iPSCs and their derivatives,and should be applicable to other reprogramming methods.
View Publication
Chemically defined generation of human cardiomyocytes.
Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex,undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices,we systematically developed an optimized cardiac differentiation strategy,using a chemically defined medium consisting of just three components: the basal medium RPMI 1640,L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule-based induction of differentiation,this protocol produced contractile sheets of up to 95% TNNT2(+) cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.
View Publication
Yang D et al. (NOV 2016)
Life sciences 164 9--14
Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells.
AIMS The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro,and test the effect of in vivo environments on the further maturation of hESCs derived cells. MAIN METHODS Embryoid bodies (EBs) formed from hESCs,with serum-free KSR-based medium and mesodermal specification related factors,CHIR,and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB,TGF β3,BMP4 in sequence for 24days. The morphology,FACS,histological staining as well as the expression of chondrogenic specific genes were detected in each stage,and further in vivo experiments,cell injections and tissue transplantations,further verified the formation of chondrocytes. KEY FINDINGS We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule,their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. SIGNIFICANCE The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes,and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease.
View Publication
Kang S-JJ et al. (JUN 2016)
Cell Biology and Toxicology 1--15
Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2
Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here,human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes,and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay,the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay,phenotypic changes in mitochondrial membrane potential,calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes,albumin/urea secretion,and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition,the cell viability of SC-iHeps and p-Heps was increased by ketoconazole,a CYP3A4 inhibitor. Collectively,SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore,SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.
View Publication
Krueger WH et al. (JUL 2013)
PLoS ONE 8 7 e67296
Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health
Hepatocytes play a central and crucial role in cholesterol and lipid homeostasis,and their proper function is of key importance for cardiovascular health. In particular,hepatocytes (especially periportal hepatocytes) endogenously synthesize large amounts of cholesterol and secrete it into circulating blood via apolipoprotein particles. Cholesterol-secreting hepatocytes are also the clinically-relevant cells targeted by statin treatment in vivo. The study of cholesterol homeostasis is largely restricted to the use of animal models and immortalized cell lines that do not recapitulate those key aspects of normal human hepatocyte function that result from genetic variation of individuals within a population. Hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells can provide a cell culture model for the study of cholesterol homeostasis,dyslipidemias,the action of statins and other pharmaceuticals important for cardiovascular health. We have analyzed expression of core components for cholesterol homeostasis in untreated human iPS cells and in response to pravastatin. Here we show the production of differentiated cells resembling periportal hepatocytes from human pluripotent stem cells. These cells express a broad range of apolipoproteins required for secretion and elimination of serum cholesterol,actively secrete cholesterol into the medium,and respond functionally to statin treatment by reduced cholesterol secretion. Our research shows that HLCs derived from human pluripotent cells provide a robust cell culture system for the investigation of the hepatic contribution to human cholesterol homeostasis at both cellular and molecular levels. Importantly,it permits for the first time to also functionally assess the impact of genetic polymorphisms on cholesterol homeostasis. Finally,the system will also be useful for mechanistic studies of heritable dyslipidemias,drug discovery,and investigation of modes of action of cholesterol-modulatory drugs.
View Publication