Generation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts
Induced pluripotent stem cells hold great potential in regenerative medicine as it enables to generate pluripotent stem cells from any available cell types. Ectopic expression of four transcription factors (Oct4,Sox2,Klf4,and c-Myc) can reprogram fibroblasts directly to pluripotency as shown in multiple species. Here,we describe detailed protocols for generation of iPSCs from adult canine fibroblasts. Robust canine iPSCs will provide powerful tools not only to study human diseases,but also for the development of therapeutic approaches.
View Publication
Phondeechareon T et al. (OCT 2016)
Annals of hematology 95 10 1617--1625
Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH,however,lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore,other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs),characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming,and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation,the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.
View Publication
Davis RP et al. (JUL 2013)
Differentiation 86 1–2 30--37
Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system
Transposon gene delivery systems offer an alternative,non-viral-based approach to generate induced pluripotent stem cells (iPSCs). Here we used the Sleeping Beauty (SB) transposon to generate four human iPSC lines from foetal fibroblasts. In contrast to other gene delivery systems,the SB transposon does not exhibit an integration bias towards particular genetic elements,thereby reducing the risk of insertional mutagenesis. Furthermore,unlike the alternative transposon piggyBac,SB has no SB-like elements within the human genome,minimising the possibility of mobilising endogenous transposon elements. All iPSC lines exhibited the expected characteristics of pluripotent human cells,including the ability to differentiate to derivatives of all three germ layers in vitro. Re-expression of the SB transposase in the iPSCs after reprogramming resulted in the mobilisation of some of the transposons. These results indicate that the SB transposon system is a useful addition to methods for generating human iPSCs,both for basic and applied biomedical research,and in the context of future therapeutic application. textcopyright 2013 International Society of Differentiation.
View Publication
Deng F et al. ( 2012)
Molecular vision 18 2871
Generation of induced pluripotent stem cells from human Tenon's capsule fibroblasts.
PURPOSE This study aimed to develop a feasible and efficient method for generating embryonic stem cell (ESC)-like induced pluripotent stem (iPS) cells from human Tenon's capsule fibroblasts (HTFs) through the expression of a defined set of transcription factors,which will have significant application value for ophthalmic personalized regenerative medicine. METHODS HTFs were harvested from fresh samples,and reprogramming was induced by the exogenous expression of the four classic transcription factors,OCT-3/4,SOX-2,KLF-4,and C-MYC. The HTF-derived iPS (TiPS) cells were analyzed with phase contrast microscopy,real-time PCR,immunofluorescence,FACS analysis,alkaline phosphatase activity analysis,and a teratoma formation assay. Human ESC colonies were used as the positive control. RESULTS The resulting HTF-derived iPS cell colonies were indistinguishable from human ESC colonies regarding morphology,gene expression levels,pluripotent gene expression,alkaline phosphatase activity,and the ability to generate all three embryonic germ layers. CONCLUSIONS This study presents a simple,efficient,practical procedure for generating patient-tailored iPS cells from HTFs. These cells will serve as a valuable and preferred candidate donor cell population for ophthalmological regenerative medicine.
View Publication
Zhou T et al. (JUL 2011)
Journal of the American Society of Nephrology : JASN 22 7 1221--1228
Generation of induced pluripotent stem cells from urine
Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells,termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs,and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here,we present a simple,reproducible,noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols,and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.
View Publication
Avery S (SEP 2011)
Current protocols in stem cell biology Chapter 5 Unit5C.1
Generation of inducible shRNAi human embryonic stem cell lines.
This unit describes the generation of tetracycline-inducible short hairpin RNA interference (shRNAi) human embryonic stem cell (hESC) lines. Using this vector-based approach enables stable and long-term expression of target hairpins under the control of doxycycline/tetracycline. Target degradation can be controlled in both a dose- and time-dependent manner that can even be switched off,depending upon the particular requirements of the study.
View Publication
Wang LL et al. (JAN 2013)
Nature methods 10 1 84--9
Generation of integration-free neural progenitor cells from cells in human urine.
Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed,we report that the cells survive and differentiate upon transplant into newborn rat brain.
View Publication
Caxaria S et al. ( 2014)
1353 355--366
Generation of integration-free patient specific ips cells using episomal plasmids under feeder free conditions
Reprogramming somatic cells into a pluripotent state involves the overexpression of transcription factors leading to a series of changes that end in the formation of induced pluripotent stem cells (iPSCs). These iPSCs have a wide range of potential uses from drug testing and in vitro disease modelling to personalized cell therapies for patients. While viral methods for reprogramming factor delivery have been traditionally preferred due to their high efficiency,it is now possible to generate iPSCs using nonviral methods at similar efficiencies. We developed a robust reprogramming strategy that combines episomal plasmids and the use of commercially available animal free reagents that can be easily adapted for the GMP manufacture of clinical grade cells.
View Publication
Su RJ et al. ( 2014)
1357 1341 57--69
Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors
Peripheral blood is the easy-to-access,minimally invasive,and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol,one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.
View Publication
Sproul Aa et al. (JAN 2014)
Acta Neuropathologica Communications 2 1 4
Generation of iPSC lines from archived non-cryoprotected biobanked dura mater
Induced pluripotent stem cells (iPSCs) derived from patients with neurodegenerative disease generally lack neuropathological confirmation,the gold standard for disease classification and grading of severity. The use of tissue with a definitive neuropathological diagnosis would be an ideal source for iPSCs. The challenge to this approach is that the majority of biobanked brain tissue was not meant for growing live cells,and thus was not frozen in the presence of cryoprotectants such as DMSO. PMID: 24398250
View Publication
Nakano T et al. (AUG 1994)
Science (New York,N.Y.) 265 5175 1098--101
Generation of lymphohematopoietic cells from embryonic stem cells in culture.
An efficient system was developed that induced the differentiation of embryonic stem (ES) cells into blood cells of erythroid,myeloid,and B cell lineages by coculture with the stromal cell line OP9. This cell line does not express functional macrophage colony-stimulating factor (M-CSF). The presence of M-CSF had inhibitory effects on the differentiation of ES cells to blood cells other than macrophages. Embryoid body formation or addition of exogenous growth factors was not required,and differentiation was highly reproducible even after the selection of ES cells with the antibiotic G418. Combined with the ability to genetically manipulate ES cells,this system will facilitate the study of molecular mechanisms involved in development and differentiation of hematopoietic cells.
View Publication