Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily,although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged,and are associated with elevated transcription of HERVH,a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors,including LBP9,recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts,including pluripotency-modulating long non-coding RNAs. Disruption of LBP9,HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs,and establish novel primate-specific transcriptional circuitry regulating pluripotency.
View Publication
Olmsted-Davis EA et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 26 15877--82
Primitive adult hematopoietic stem cells can function as osteoblast precursors.
Osteoblasts are continually recruited from stem cell pools to maintain bone. Although their immediate precursor is a plastic-adherent mesenchymal stem cell able to generate tissues other than bone,increasing evidence suggests the existence of a more primitive cell that can differentiate to both hematopoietic and mesenchymal cells. We show here that the side population" (SP) of marrow stem cells�
View Publication
Hudson J et al. (JUN 2012)
Stem cells and development 21 9 1513--23
Primitive cardiac cells from human embryonic stem cells.
Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study,we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures,single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells,corresponding to an increased expression of pluripotency markers OCT4 and NANOG,and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed,aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols,with induction of primitive streak cells using bone morphogenetic protein 4 and activin A,followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5,thus indicating the production of large numbers of immature cardiomyocytes (˜65,000/cm(2) or ˜1.5 per input hESC). This protocol was shown to be effective in HES3,H9,and,to a lesser,extent,MEL1 hESC lines. In addition,we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression,whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation,and potentially for the future treatment of heart failure.
View Publication
Zhang J et al. (FEB 2007)
The Journal of clinical investigation 117 2 473--81
Primitive hematopoietic cells resist HIV-1 infection via p21.
Hematopoietic stem cells are resistant to HIV-1 infection. Here,we report a novel mechanism by which the cyclin-dependent kinase inhibitor (CKI) p21(Waf1/Cip1/Sdi1) (p21),a known regulator of stem cell pool size,restricts HIV-1 infection of primitive hematopoietic cells. Modifying p21 expression altered HIV-1 infection prior to changes in cell cycling and was selective for p21 since silencing the related CKIs,p27(Kip1) and p18(INK4C),had no effect on HIV-1. We show that p21 blocked viral infection by complexing with HIV-1 integrase and aborting chromosomal integration. A closely related lentivirus with a distinct integrase,SIVmac-251,and the other cell-intrinsic inhibitors of HIV-1,Trim5alpha,PML,Murr1,and IFN-alpha,were unaffected by p21. Therefore,p21 is an endogenous cellular component in stem cells that provides a unique molecular barrier to HIV-1 infection and may explain how these cells remain an uninfected sanctuary" in HIV disease."
View Publication
Giebel B et al. (MAR 2006)
Blood 107 5 2146--52
Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.
It is often predicted that stem cells divide asymmetrically,creating a daughter cell that maintains the stem-cell capacity,and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg,in Drosophila),it remains illusive whether primitive hematopoietic cells in mammals actually can divide asymmetrically. In our experiments we have challenged this question and analyzed the developmental capacity of separated offspring of primitive human hematopoietic cells at a single-cell level. We show for the first time that the vast majority of the most primitive,in vitro-detectable human hematopoietic cells give rise to daughter cells adopting different cell fates; 1 inheriting the developmental capacity of the mother cell,and 1 becoming more specified. In contrast,approximately half of the committed progenitor cells studied gave rise to daughter cells,both of which adopted the cell fate of their mother. Although our data are compatible with the model of asymmetric cell division,other mechanisms of cell fate specification are discussed. In addition,we describe a novel human hematopoietic progenitor cell that has the capacity to form natural killer (NK) cells as well as macrophages,but not cells of other myeloid lineages.
View Publication
Zhang CC et al. (FEB 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 7 2184--9
Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal.
Although the wild-type prion protein (PrP) is abundant and widely expressed in various types of tissues and cells,its physiological function(s) remain unknown,and PrP knockout mice do not exhibit overt and undisputed phenotypes. Here we showed that PrP is expressed on the surface of several bone marrow cell populations successively enriched in long-term (LT) hematopoietic stem cells (HSCs) using flow cytometry analysis. Affinity purification of the PrP-positive and -negative fractions from these populations,followed by competitive bone marrow reconstitution assays,shows that all LT HSCs express PrP. HSCs from PrP-null bone marrow exhibited impaired self-renewal in serial transplantation of lethally irradiated mouse recipients both in the presence and absence of competitors. When treated with a cell cycle-specific myelotoxic agent,the animals reconstituted with PrP-null HSCs exhibit increased sensitivity to hematopoietic cell depletion. Ectopic expression of PrP in PrP-null bone marrow cells by retroviral infection rescued the defective hematopoietic engraftment during serial transplantation. Therefore,PrP is a marker for HSCs and supports their self-renewal.
View Publication
Suchá et al. (MAY 2014)
European journal of histochemistry : EJH 58 2 2389
PRMT1 arginine methyltransferase accumulates in cytoplasmic bodies that respond to selective inhibition and DNA damage.
Protein arginine methyltransferases (PRMTs) are responsible for symmetric and asymmetric methylation of arginine residues of nuclear and cytoplasmic proteins. In the nucleus,PRMTs belong to important chromatin modifying enzymes of immense functional significance that affect gene expression,splicing and DNA repair. By time-lapse microscopy we have studied the sub-cellular localization and kinetics of PRMT1 after inhibition of PRMT1 and after irradiation. Both transiently expressed and endogenous PRMT1 accumulated in cytoplasmic bodies that were located in the proximity of the cell nucleus. The shape and number of these bodies were stable in untreated cells. However,when cell nuclei were microirradiated by UV-A,the mobility of PRMT1 cytoplasmic bodies increased,size was reduced,and disappeared within approximately 20 min. The same response occurred after $$-irradiation of the whole cell population,but with delayed kinetics. Treatment with PRMT1 inhibitors induced disintegration of these PRMT1 cytoplasmic bodies and prevented formation of 53BP1 nuclear bodies (NBs) that play a role during DNA damage repair. The formation of 53BP1 NBs was not influenced by PRMT1 overexpression. Taken together,we show that PRMT1 concentrates in cytoplasmic bodies,which respond to DNA injury in the cell nucleus,and to treatment with various PRMT1 inhibitors.
View Publication
Gkountela S et al. (APR 2014)
Stem Cell Reviews and Reports 10 2 230--239
PRMT5 is required for human embryonic stem cell proliferation but not pluripotency.
Human pluripotent stem cells (PSCs) are critical in vitro tools forbackslashnunderstanding mechanisms that regulate lineage differentiation inbackslashnthe human embryo as well as a potentially unlimited supply of stembackslashncells for regenerative medicine. Pluripotent human and mouse embryonicbackslashnstem cells (ESCs) derived from the inner cell mass of blastocystsbackslashnshare a similar transcription factor network to maintain pluripotencybackslashnand self-renewal,yet there are considerable molecular differencesbackslashnreflecting the diverse environments in which mouse and human ESCsbackslashnare derived. In the current study we evaluated the role of Proteinbackslashnarginine methyltransferase 5 (PRMT5) in human ESC (hESC) self-renewalbackslashnand pluripotency given its critical role in safeguarding mouse ESCbackslashnpluripotency. Unlike the mouse,we discovered that PRMT5 has no rolebackslashnin hESC pluripotency. Using microarray analysis we discovered thatbackslashna significant depletion in PRMT5 RNA and protein from hESCs changedbackslashnthe expression of only 78 genes,with the majority being repressed.backslashnFunctionally,we discovered that depletion of PRMT5 had no effectbackslashnon expression of OCT4,NANOG or SOX2,and did not prevent teratomabackslashnformation. Instead,we show that PRMT5 functions in hESCs to regulatebackslashnproliferation in the self-renewing state by regulating the fractionbackslashnof cells in Gap 1 (G1) of the cell cycle and increasing expressionbackslashnof the G1 cell cycle inhibitor P57. Taken together our data unveilsbackslashna distinct role for PRMT5 in hESCs and identifies P57 as new target.
View Publication
Tan Y et al. (JAN 2012)
Journal of biomechanics 45 1 123--8
Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers.
Human embryonic stem cells (hESC) and hESC-derived cardiomyocytes (hESC-CM) hold great promise for the treatment of cardiovascular diseases. However the mechanobiological properties of hESC and hESC-CM remains elusive. In this paper,we examined the dynamic and static micromechanical properties of hESC and hESC-CM,by manipulating via optical tweezers at the single-cell level. Theoretical approaches were developed to model the dynamic and static mechanical responses of cells during optical stretching. Our experiments showed that the mechanical stiffness of differentiated hESC-CM increased after cardiac differentiation. Such stiffening could associate with increasingly organized myofibrillar assembly that underlines the functional characteristics of hESC-CM. In summary,our findings lay the ground work for using hESC-CMs as models to study mechanical and contractile defects in heart diseases.
View Publication
Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming.
Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes,both in vitro and in vivo. Beyond uses in cell replacement therapy,patient-specific cardiomyocytes may find applications in drug testing,drug discovery,and disease modeling. Recently,approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs),adult heart-derived cardiac progenitor cells (CPCs),and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts,highlighting potential applications and future challenges.
View Publication
Wen Y and Jin S (OCT 2014)
Journal of Biotechnology 188 122--129
Production of neural stem cells from human pluripotent stem cells
Despite significant advances in commercially available media and kits and the differentiation approaches for human neural stem cell (NSC) generation,NSC production from the differentiation of human pluripotent stem cell (hPSC) is complicated by its time-consuming procedure,complex medium composition,and purification step. In this study,we developed a convenient and simplified NSC production protocol to meet the demand of NSC production. We demonstrated that NSCs can be generated efficiently without requirement of specific small molecules or embryoid body formation stage. Our experimental results suggest that a short suspension culture period may facilitate ectoderm lineage specification rather than endoderm or mesoderm lineage specification from hPSCs. The method developed in this study shortens the turnaround time of NSC production from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) differentiation. It provides a straightforward and useful strategy for generating NSCs that can benefit a wide range of research applications for human brain research.
View Publication