Giuntoli S et al. (MAY 2007)
Stem cells (Dayton,Ohio) 25 5 1119--25
Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells.
We showed that resistance to severe hypoxia defines hierarchical levels within normal hematopoietic populations and that hypoxia modulates the balance between generation of progenitors and maintenance of hematopoietic stem cells (HSC) in favor of the latter. This study deals with the effects of hypoxia (0.1% oxygen) in vitro on Friend's murine erythroleukemia (MEL) cells,addressing the question of whether a clonal leukemia cell population comprise functionally different cell subsets characterized by different hypoxia resistance. To identify leukemia stem cells (LSC),we used the Culture Repopulating Ability (CRA) assay we developed to quantify in vitro stem cells capable of short-term reconstitution (STR). Hypoxia strongly inhibited the overall growth of MEL cell population,which,despite its clonality,comprised progenitors characterized by markedly different hypoxia-resistance. These included hypoxia-sensitive colony-forming cells and hypoxia-resistant STR-type LSC,capable of repopulating secondary liquid cultures of CRA assays,confirming what was previously shown for normal hematopoiesis. STR-type LSC were found capable not only of surviving in hypoxia but also of being mostly in cycle,in contrast with the fact that almost all hypoxia-surviving cells were growth-arrested and with what we previously found for HSC. However,quiescent LSC were also detected,capable of delayed culture repopulation with the same efficiency as STR-like LSC. The fact that even quiescent LSC,believed to sustain minimal residual disease in vivo,were found within the MEL cells indicates that all main components of leukemia cell populations may be present within clonal cell lines,which are therefore suitable to study the sensitivity of individual components to treatments. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
Calado RT et al. (SEP 2009)
Blood 114 11 2236--43
Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells.
Androgens have been used in the treatment of bone marrow failure syndromes without a clear understanding of their mechanism of action. Blood counts of patients with dyskeratosis congenita or aplastic anemia with mutations in telomerase genes can improve with androgen therapy. Here we observed that exposure in vitro of normal peripheral blood lymphocytes and human bone marrow-derived CD34(+) cells to androgens increased telomerase activity,coincident with higher TERT mRNA levels. Cells from patients who were heterozygous for telomerase mutations had low baseline telomerase activity,which was restored to normal levels by exposure to androgens. Estradiol had an effect similar to androgens on TERT gene expression and telomerase enzymatic activity. Tamoxifen abolished the effects of both estradiol and androgens on telomerase function,and letrozole,an aromatase inhibitor,blocked androgen effects on telomerase activity. Conversely,flutamide,an androgen receptor antagonist,did not affect androgen stimulation of telomerase. Down-regulation by siRNA of estrogen receptor-alpha (ER alpha),but not ER beta,inhibited estrogen-stimulated telomerase function. Our results provide a mechanism for androgen therapy in bone marrow failure: androgens appear to regulate telomerase expression and activity mainly by aromatization and through ER alpha. These findings have potential implications for the choice of current androgenic compounds and the development of future agents for clinical use.
View Publication
Aliahmad P et al. (OCT 2010)
Nature immunology 11 10 945--52
Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages.
TOX is a DNA-binding factor required for development of CD4(+) T cells,natural killer T cells and regulatory T cells. Here we document that both natural killer (NK) cell development and lymphoid tissue organogenesis were also inhibited in the absence of TOX. We found that the development of lymphoid tissue-inducer cells,a rare subset of specialized cells that has an integral role in lymphoid tissue organogenesis,required TOX. Tox was upregulated considerably in immature NK cells in the bone marrow,consistent with the loss of mature NK cells in the absence of this nuclear protein. Thus,many cell lineages of the immune system share a TOX-dependent step for development.
View Publication
Tauchmanovà et al. (FEB 2005)
The Journal of clinical endocrinology and metabolism 90 2 627--34
Short-term zoledronic acid treatment increases bone mineral density and marrow clonogenic fibroblast progenitors after allogeneic stem cell transplantation.
Although osteoporosis is a relatively common complication after allogeneic stem cell transplantation,the role of bisphosphonates in its management has not yet been completely established. Thirty-two patients who underwent allogeneic stem cell transplantation were prospectively evaluated for bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN) after a median period of 12.2 months. Then,15 of the patients with osteoporosis or rapidly progressing osteopenia (bone loss textgreater 5%/yr) received three monthly doses of 4 mg zoledronic acid iv. Fifteen patients were followed up without treatment,and all 30 patients were reevaluated after 12 months for BMD and bone turnover markers. By using enriched mesenchymal stem cells in the colony-forming units fibroblast (CFU-F) assay,we evaluated the osteogenic stromal lineage. This procedure was performed in both groups of patients at study entry and after 12 months. The average BMD loss was 3.42% at LS and 3.8% at FN during a 1-yr longitudinal evaluation in 32 patients. Subsequently,BMD increased at both LS and FN (9.8 and 6.4%,respectively) in the zoledronic acid-treated cohort. Hydroxyproline excretion decreased,and serum bone-specific alkaline phosphatase increased significantly,whereas serum osteocalcin increase did not reach the limit of significance. A significant increase in CFU-F growth in vitro was induced by in vivo zoledronic acid administration. In the untreated group,no significant change was observed in bone turnover markers,LS BMD (-2.1%),FN BMD (-2.3%),and CFU-F colony number. In conclusion,short-term zoledronic acid treatment consistently improved both LS and FN BMD in transplanted patients who were at high risk for fast and/or persistent bone loss,partly by increasing the osteogenic progenitors in the stromal cell compartment.
View Publication
Mendoza N et al. ( 2014)
1181 97--108
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium,which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques,such as photolithography,generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition,such technologies are costly and require a clean room for fabrication. This chapter offers an easy,fast,robust,and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally,this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly,this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
View Publication
Liu J et al. (SEP 2012)
Human Molecular Genetics 21 17 3795--3805
Signaling defects in iPSC-derived fragile X premutation neurons
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a leading monogenic neurodegenerative disorder affecting premutation carriers of the fragile X (FMR1) gene. To investigate the underlying cellular neuropathology,we produced induced pluripotent stem cell-derived neurons from isogenic subclones of primary fibroblasts of a female premutation carrier,with each subclone bearing exclusively either the normal or the expanded (premutation) form of the FMR1 gene as the active allele. We show that neurons harboring the stably-active,expanded allele (EX-Xa) have reduced postsynaptic density protein 95 protein expression,reduced synaptic puncta density and reduced neurite length. Importantly,such neurons are also functionally abnormal,with calcium transients of higher amplitude and increased frequency than for neurons harboring the normal-active allele. Moreover,a sustained calcium elevation was found in the EX-Xa neurons after glutamate application. By excluding the individual genetic background variation,we have demonstrated neuronal phenotypes directly linked to the FMR1 premutation. Our approach represents a unique isogenic,X-chromosomal epigenetic model to aid the development of targeted therapeutics for FXTAS,and more broadly as a model for the study of common neurodevelopmental (e.g. autism) and neurodegenerative (e.g. Parkinsonism,dementias) disorders.
View Publication
Sood a et al. (DEC 2011)
Nature nanotechnology 6 12 824--33
Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness.
The use of nanoparticles in medicine is ever increasing,and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here,we show that this indirect DNA damage depends on the thickness of the cellular barrier,and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling,including cytokine release,occurred only across bilayer and multilayer barriers,but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers,our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.
View Publication
Menon MP et al. (MAR 2006)
The Journal of clinical investigation 116 3 683--94
Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis.
Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that,unlike steady-state erythropoiesis,erythropoiesis during anemia depends sharply on an Epo receptor-phosphotyrosine-343-Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM),severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments,donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context,stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system,EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion,and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x),in contrast,was not significantly induced via WT-EpoR,EpoR-HM,or EpoR-H alleles. In Kit+ CD71+ erythroblasts,EpoR-PY343 signals furthermore enhanced SCF growth effects,and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit- CD71+ erythroblasts,oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343-mediated events. Stress erythropoiesis,therefore,requires stage-specific EpoR-PY343-Stat5 signals,some of which selectively bolster SCF and oncostatin-M action.
View Publication
Wrighton PJ et al. (DEC 2014)
Proceedings of the National Academy of Sciences of the United States of America 111 51 18126--18131
Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins.
The fate decisions of human pluripotent stem (hPS) cells are governed by soluble and insoluble signals from the microenvironment. Many hPS cell differentiation protocols use Matrigel,a complex and undefined substrate that engages multiple adhesion and signaling receptors. Using defined surfaces programmed to engage specific cell-surface ligands (i.e.,glycosaminoglycans and integrins),the contribution of specific matrix signals can be dissected. For ectoderm and motor neuron differentiation,peptide-modified surfaces that can engage both glycosaminoglycans and integrins are effective. In contrast,surfaces that interact selectively with glycosaminoglycans are superior to Matrigel in promoting hPS cell differentiation to definitive endoderm and mesoderm. The modular surfaces were used to elucidate the signaling pathways underlying these differences. Matrigel promotes integrin signaling,which in turn inhibits mesendoderm differentiation. The data indicate that integrin-activating surfaces stimulate Akt signaling via integrin-linked kinase (ILK),which is antagonistic to endoderm differentiation. The ability to attribute cellular responses to specific interactions between the cell and the substrate offers new opportunities for revealing and controlling the pathways governing cell fate.
View Publication
Mä et al. (DEC 2010)
Cardiovascular research 88 3 530--8
Silencing of either SR-A or CD36 reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors.
AIMS: Macrophage scavenger receptor A (SR-A) and class B scavenger receptor CD36 (CD36) contribute to foam cell formation and atherogenesis via uptake of modified lipoproteins. So far,the role of these scavenger receptors has been studied mainly using knockout models totally lacking these receptors. We studied the role of SR-A and CD36 in foam cell formation and atherogenesis by RNA interference (RNAi)-mediated silencing,which is a clinically feasible method to down-regulate the expression of these receptors. METHODS AND RESULTS: We constructed lentivirus vectors encoding short hairpin RNAs (shRNAs) against mouse SR-A and CD36. Decreased SR-A but not CD36 expression led to reduced foam cell formation caused by acetylated low-density lipoprotein (LDL) in mouse macrophages,whereas the uptake of oxidized LDL was not altered. More importantly,silencing of SR-A upregulates CD36 and vice versa. In LDL receptor-deficient apolipoprotein B100 (LDLR(-/-)ApoB(100/100)) mice kept on a western diet,silencing of either SR-A or CD36 in bone marrow cells led to a marked decrease (37.4 and 34.2%,respectively) in cross-sectional lesion area,whereas simultaneous silencing of both receptors was not effective. CONCLUSION: Our results suggest that silencing of either SR-A or CD36 alone reduces atherogenesis in mice. However,due to reciprocal upregulation,silencing of both SR-A and CD36 is not effective.
View Publication
Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells.
Adult hematopoietic and other tissue stem cells have highly constrained cell cycling that limits their susceptibility to standard gene therapy vectors,which depend upon chromosomal integration. Using cytokine cocktails to increase transduction efficiency often compromises subsequent stem cell function in vivo. We previously showed that p21(Waf1/Cip1/Sdi1) (p21) mediates stem cell quiescence in vivo and decreasing its expression ex vivo leads to an expansion of stem cell pool in vivo. Here,we report that application of p21 specific siRNA increased the gene transduction efficiency in hematopoietic stem cells while preserving cell multipotentiality. Both types of siRNA,synthesized siRNA and transcribed shRNA,reduced p21 expression in target cells by 85-98%. The effect of RNAi in these cells was transient and the level of p21 mRNA returned to base line 14-28 days after siRNA treatment. This brief interval of reduction,however,was sufficient to increase transduction efficiency to two- to four-fold in cell cultures,and followed by a seven- to eight-fold increase in mice. The RNAi treated,lentivector-transduced CD34+ cells retained multipotentiality as assessed in vitro by colony formation assay and in vivo by NOD/SCID mouse transplantation assay. Reduction of p21 resulted in an increased chromosomal integration of lentivector into target cellular DNA. Taken together,both synthesized and transcribed siRNA knocked down p21 expression in human CD34+ hematopoietic stem/progenitor cells. Silencing p21 expression increased gene transduction efficiency and vector integration while retaining stem cell multipotentiality. Thus,RNAi targeting of p21 is a useful strategy to increase stem cell gene transfer efficiency. Decreasing p21 expression transiently while increasing gene-transfer vector integration may ultimately facilitate clinical applications of gene therapy.
View Publication
Lou Y-R et al. (SEP 2015)
Scientific reports 5 13635
Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells.
Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus,they are increasingly employed as models for cancer and drug research,as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures,and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore,SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells,providing a pathway to enable our understanding of morphogenesis in 3D cultures.
View Publication