STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells.
Receptor activator of nuclear factor kappa-B ligand (RANKL) is a critical osteoclastogenic factor expressed in bone marrow stromal/osteoblast lineage cells. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) levels are elevated in pathologic conditions such as multiple myeloma and inflammatory arthritis,and have been positively correlated with osteolytic markers. Osteoprotegerin (OPG) which inhibits osteoclastogenesis is a decoy receptor for RANKL and also known to interact with TRAIL. Herein,we show that TRAIL increases DR5 and DcR1 receptors but no change in the levels of DR4 and DcR2 expression in human bone marrow derived stromal/preosteoblast (SAKA-T) cell line. We further demonstrated that TRAIL treatment significantly decreased OPG mRNA expression. Interestingly,TRAIL treatment induced RANKL mRNA expression in these cells. In addition,TRAIL significantly increased NF-kB and c-Jun N-terminal kinase (JNK) activity. Human transcription factor array screening by real-time RT-PCR identified TRAIL up-regulation of the signal transducers and activators of the transcription (STAT)-6 expression in SAKA-T cells. TRAIL stimulation induced p-STAT-6 expression in human bone marrow derived primary stromal/preosteoblast cells. Confocal microscopy analysis further revealed p-STAT-6 nuclear localization in SAKA-T cells. Chromatin immunoprecipitation (ChIP) assay confirmed p-STAT-6 binding to the hRANKL gene distal promoter region. In addition,siRNA suppression of STAT-6 expression inhibits TRAIL increased hRANKL gene promoter activity. Thus,our results suggest that TRAIL induces RANKL expression through a STAT-6 dependent transcriptional regulatory mechanism in bone marrow stromal/preosteoblast cells.
View Publication
Chou W-C et al. (NOV 2006)
Blood 108 9 3005--11
STAT3 positively regulates an early step in B-cell development.
Transcription factors are critical for instructing the development of B lymphocytes from multipotential progenitor cells in the bone marrow (BM). Here,we show that the absence of STAT3 impaired B-cell development. Mice selectively lacking STAT3 in BM progenitor cells displayed reduced numbers of mature B cells,both in the BM and in the periphery. The reduction in the B-cell compartment included reduced percentages and numbers of pro-B,pre-B,and immature B cells in the absence of STAT3,whereas the number of pre-pro-B cells was increased. We found that pro-B and pre-B-cell populations lacking STAT3 were hyporesponsive to IL-7 because of a decreased number of IL-7-responsive cells rather than decreased expression or signaling of IL-7Ralpha. Moreover,STAT3-deficient mice displayed enhanced apoptosis in the pro-B population when deprived of survival factors,suggesting that at least 2 mechanisms (impaired differentiation and enhanced apoptosis) are involved in the mutant phenotype. Last,BM transplantation confirmed that impaired B lymphopoiesis in the absence of STAT3 was caused by a cell autonomous defect. In sum,these studies defined a specific role for STAT3 in early B-cell development,probably acting at the pre-pro-B transition by contributing to the survival of IL-7-responsive progenitors.
View Publication
Redell MS et al. (MAY 2011)
Blood 117 21 5701--9
Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor.
Acute myeloid leukemia (AML) is an aggressive malignancy with a relapse rate approaching 50%,despite aggressive chemotherapy. New therapies for AML are targeted at signal transduction pathways known to support blast survival,such as the Stat3 pathway. Aberrant activation of Stat3 has been demonstrated in many different malignancies,including AML,and this finding is frequently associated with more aggressive disease. The objectives of this study were: (1) to characterize Stat3 signaling patterns in AML cells lines and primary pediatric samples; and (2) to test the efficacy and potency of a novel Stat3 inhibitor in inducing apoptosis in AML cells. We found that Stat3 was constitutively activated in 6 of 7 AML cell lines and 6 of 18 primary pediatric AML samples. Moreover,constitutively phosphorylated Stat3 was frequent in samples with normal karyotype but uncommon in samples with t(8;21). Most cell lines and primary samples responded to G-CSF stimulation,although the sensitivity and magnitude of the response varied dramatically. Our novel small-molecule Stat3 inhibitor,C188-9,inhibited G-CSF-induced Stat3 phosphorylation,induced apoptosis in AML cell lines and primary samples,and inhibited AML blast colony formation with potencies in the low micromolar range. Therefore,Stat3 inhibition may be a valuable strategy for targeted therapies for AML.
View Publication
Teglund S et al. (MAY 1998)
Cell 93 5 841--50
Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses.
A variety of cytokines mediate the activation of Janus protein tyrosine kinases (Jaks). The Jaks then phosphorylate cellular substrates,including members of the signal transducers and activators of transcription (Stat) family of transcription factors. Among the Stats,the two highly related proteins,Stat5a and Stat5b,are activated by a variety of cytokines. To assess the role of the Stat5 proteins,mutant mice were derived that have the genes deleted individually or together. The phenotypes of the mice demonstrate an essential,and often redundant,role for the two Stat5 proteins in a spectrum of physiological responses associated with growth hormone and prolactin. Conversely,the responses to a variety of cytokines that activate the Stat5 proteins,including erythropoietin,are largely unaffected.
View Publication
Cell-based therapies have generated great interest in the scientific and medical communities,and stem cells in particular are very appealing for regenerative medicine,drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions,such as blood cells,nerve cells or cardiac muscle. However,the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors,particularly considerations regarding critical culture parameters,possible bioreactor configurations,and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines,while using robust and cost-effective approaches.
View Publication
Cottler-Fox MH et al. (JAN 2003)
Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 419--37
Stem cell mobilization.
Successful blood and marrow transplant (BMT),both autologous and allogeneic,requires the infusion of a sufficient number of hematopoietic progenitor/stem cells (HPCs) capable of homing to the marrow cavity and regenerating a full array of hematopoietic cell lineages in a timely fashion. At present,the most commonly used surrogate marker for HPCs is the cell surface marker CD34,identified in the clinical laboratory by flow cytometry. Clinical studies have shown that infusion of at least 2 x 10(6) CD34(+) cells/kg recipient body weight results in reliable engraftment as measured by recovery of adequate neutrophil and platelet counts approximately 14 days after transplant. Recruitment of HPCs from the marrow into the blood is termed mobilization,or,more commonly,stem cell mobilization. In Section I,Dr. Tsvee Lapidot and colleagues review the wide range of factors influencing stem cell mobilization. Our current understanding focuses on chemokines,proteolytic enzymes,adhesion molecules,cytokines and stromal cell-stem cell interactions. On the basis of this understanding,new approaches to mobilization have been designed and are now starting to undergo clinical testing. In Section II,Dr. Michele Cottler-Fox describes factors predicting the ability to mobilize the older patient with myeloma. In addition,clinical approaches to improving collection by individualizing the timing of apheresis and adjusting the volume of blood processed to achieve a desired product are discussed. Key to this process is the daily enumeration of blood CD34(+) cells. Newer methods of enumerating and mobilizing autologous blood HPCs are discussed. In Section III,Dr. John DiPersio and colleagues provide data on clinical results of mobilizing allogeneic donors with G-CSF,GM-CSF and the combination of both as relates to the number and type of cells collected by apheresis. Newer methods of stem cell mobilization as well as the relationship of graft composition on immune reconstitution and GVHD are discussed.
View Publication
Grunseich C et al. (OCT 2014)
Neurobiology of Disease 70 12--20
Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients.
Spinal and bulbar muscular atrophy (SBMA,Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle,the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells,but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable,with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls,with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9,Isl1,ChAT,and SMI-32,and those with the largest repeat expansions were found to have increased acetylated ??-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated ??-tubulin and HDAC6. Perinuclear lysosomal enrichment,an HDAC6 dependent process,was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease,and the observations of reduced androgen receptor levels,repeat instability,and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy. ?? 2014.
View Publication
Laird DJ et al. (DEC 2005)
Cell 123 7 1351--60
Stem cells are units of natural selection in a colonial ascidian.
Stem cells are highly conserved biological units of development and regeneration. Here we formally demonstrate that stem cell lineages are also legitimate units of natural selection. In a colonial ascidian,Botryllus schlosseri,vascular fusion between genetically distinct individuals results in cellular parasitism of somatic tissues,gametes,or both. We show that genetic hierarchies of somatic and gametic parasitism following fusion can be replicated by transplanting cells between colonies. We prospectively isolate a population of multipotent,self-renewing stem cells that retain their competitive phenotype upon transplantation. Their single-cell contribution to either somatic or germline fates,but not to both,is consistent with separate lineages of somatic and germline stem cells or pluripotent stem cells that differentiate according to the niche in which they land. Since fusion is restricted to individuals that share a fusion/histocompatibility allele,these data suggest that histocompatibility genes in Botryllus evolved to protect the body from parasitic stem cells usurping asexual or sexual inheritance.
View Publication