Shi X et al. (MAY 2011)
Infection and immunity 79 5 2031--42
Thymopoietic and bone marrow response to murine Pneumocystis pneumonia.
CD4(+) T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4(+) T cell production through the thymopoietic response in host defense against Pneumocystis infection,Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9(+) multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation,an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus,and recruitment of naïve and total CD4(+) T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4(+) cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice,the numbers of naïve,central memory,and total CD4(+) T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4(+) T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9(+) MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9(+) MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4(+) T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection.
View Publication
Barbaric I et al. (JUL 2014)
Stem Cell Reports 3 1 142--155
Time-lapse analysis of human embryonic stem cells reveals multiple bottlenecks restricting colony formation and their relief upon culture adaptation
Using time-lapse imaging,we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating,and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore,the daughter cells showed a continued pattern of cell death after division,so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact,which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast,most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny,without the need for cell:cell contacts and independent of their motility patterns. ?? 2014 The Authors.
View Publication
Ting S et al. (MAY 2014)
Biotechnology journal 9 5 675--683
Time-resolved video analysis and management system for monitoring cardiomyocyte differentiation processes and toxicology assays.
Cardiomyocytes (CM) derived from human embryonic stem cells (hESC) are used for cardio-toxicity evaluation and tested in many preclinical trials for their potential use in regenerative therapeutics. As more efficient CM differentiation protocols are developed,reliable automated platforms for characterization and detection are needed. An automated time-resolved video analysis and management system (TVAMS) has been developed for the evaluation of hESC differentiation to CM. The system was used for monitoring the kinetics of embryoid bodies (EB) generation (numbers and size) and differentiation into beating EBs (percentage beating area and beating EB count) in two differentiation protocols. We show that the percentage beating areas of EBs (from total area of the EBs) is a more sensitive and better predictor of CM differentiation efficiency than percentage of beating EBs (from total EBs) as the percentage beating areas of EBs correlates with cardiac troponin-T and myosin heavy chain expression levels. TVAMS can also be used to evaluate the effect of drugs and inhibitors (e.g. isoproterenol and ZD7288) on CM beating frequency. TVAMS can reliably replace the commonly practiced,time consuming,manual counting of total and beating EBs during CM differentiation. TVAMS is a high-throughput non-invasive video imaging platform that can be applied for the development of new CM differentiation protocols,as well as a tool to conduct CM toxicology assays.
View Publication
Rossi L et al. (JUN 2011)
Blood 117 24 6479--88
TIMP-1 deficiency subverts cell-cycle dynamics in murine long-term HSCs.
In addition to the well-recognized role in extracellular matrix remodeling,the tissue inhibitor of metalloproteinases-1 (TIMP-1) has been suggested to be involved in the regulation of numerous biologic functions,including cell proliferation and survival. We therefore hypothesized that TIMP-1 might be involved in the homeostatic regulation of HSCs,whose biologic behavior is the synthesis of both microenvironmental and intrinsic cues. We found that TIMP-1(-/-) mice have decreased BM cellularity and,consistent with this finding,TIMP-1(-/-) HSCs display reduced capability of long-term repopulation. Interestingly,the cell cycle distribution of TIMP-1(-/-) stem cells appears distorted,with a dysregulation at the level of the G(1) phase. TIMP-1(-/-) HSCs also display increased levels of p57,p21,and p53,suggesting that TIMP-1 could be intrinsically involved in the regulation of HSC cycling dynamics. Of note,TIMP-1(-/-) HSCs present decreased levels of CD44 glycoprotein,whose expression has been proven to be controlled by p53,the master regulator of the G(1)/S transition. Our findings establish a role for TIMP-1 in regulating HSC function,suggesting a novel mechanism presiding over stem cell quiescence in the framework of the BM milieu.
View Publication
Liu Y et al. (APR 2012)
Stem cells and development 21 6 829--33
Tip110 maintains expression of pluripotent factors in and pluripotency of human embryonic stem cells.
HIV-1 Tat-interacting protein of 110 kDa [Tip110; p110(nrb)/SART3/p110] is an RNA binding nuclear protein implicated in regulation of HIV-1 gene and host gene transcription,pre-mRNA splicing,and cancer immunology. Recently,we demonstrated a role for Tip110 in regulation of hematopoiesis. Here,we show that TIP110 is also expressed in human embryonic stem cells (hESCs) and expression was decreased with differentiation of these ESCs. TIP110 was found,through up- and down-modulation of expression of Tip110,to be important in maintaining pluripotent factor (NANOG,OCT4,and SOX2) expression in and pluripotency of hESCs,although the mechanisms involved and whether the Tip110 effects are direct remain to be determined.
View Publication
Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells
There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs) to establish robust,patient-specific tissue model systems for studying the pathogenesis of vascular disease,and for developing novel therapeutic interventions. Here,we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs). Furthermore,we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system,extendable to study other vascular proliferative diseases for drug screening. Thus,this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.
View Publication
Simons MP et al. (MAR 2008)
Journal of leukocyte biology 83 3 621--9
TNF-related apoptosis-inducing ligand (TRAIL) is expressed throughout myeloid development, resulting in a broad distribution among neutrophil granules.
TRAIL induces apoptosis in a variety of tumor cells. Our laboratory found that human neutrophils contain an intracellular reservoir of prefabricated TRAIL that is released after stimulation with Mycobacterium bovis bacillus Calmette-Guérin. In this study,we examined the subcellular distribution of TRAIL in freshly isolated neutrophils. Neutrophil granules,secretory vesicles (SV),and plasma membrane vesicles were isolated by subcellular fractionation,followed by free-flow electrophoresis,and examined by ELISA and immunoblot. TRAIL was found in all membrane-bound fractions with the highest amounts in the fractions enriched in azurophilic granule (AG) and SV. Immunofluorescence confocal microscopy showed that TRAIL colocalized independently with myeloperoxidase (MPO),lactoferrin (LF),and albumin,respective markers of AG,specific granules,and SV. Furthermore,immunotransmission electron microscopy demonstrated that TRAIL colocalized intracellularly with MPO and albumin. We examined TRAIL expression in PLB-985 cells induced with dimethylformamide and in CD34-positive stem cells treated with G-CSF. Quantitative RT-PCR analysis showed that TRAIL was expressed in each stage of development,whereas MPO and LF were only expressed at distinct times during differentiation. Collectively,these findings suggest that TRAIL is expressed throughout neutrophil development,resulting in a broad distribution among different granule subtypes.
View Publication
Pevsner-Fischer M et al. (FEB 2007)
Blood 109 4 1422--32
Toll-like receptors and their ligands control mesenchymal stem cell functions.
Mesenchymal stem cells (MSCs) are widespread in adult organisms and may be involved in tissue maintenance and repair as well as in the regulation of hematopoiesis and immunologic responses. Thus,it is important to discover the factors controlling MSC renewal and differentiation. Here we report that adult MSCs express functional Toll-like receptors (TLRs),confirmed by the responses of MSCs to TLR ligands. Pam3Cys,a prototypic TLR-2 ligand,augmented interleukin-6 secretion by MSC,induced nuclear factor kappa B (NF-kappaB) translocation,reduced MSC basal motility,and increased MSC proliferation. The hallmark of MSC function is the capacity to differentiate into several mesodermal lineages. We show herein that Pam3Cys inhibited MSC differentiation into osteogenic,adipogenic,and chondrogenic cells while sparing their immunosuppressive effect. Our study therefore shows that a TLR ligand can antagonize MSC differentiation triggered by exogenous mediators and consequently maintains the cells in an undifferentiated and proliferating state in vitro. Moreover,MSCs derived from myeloid factor 88 (MyD88)-deficient mice lacked the capacity to differentiate effectively into osteogenic and chondrogenic cells. It appears that TLRs and their ligands can serve as regulators of MSC proliferation and differentiation and might affect the maintenance of MSC multipotency.
View Publication
Hyslop LA et al. (JUN 2016)
Nature 534 7607 383--386
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
Mitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable affected women to have a genetically related child with a greatly reduced risk of mtDNA disease. Here we report the first preclinical studies on pronuclear transplantation (PNT). Surprisingly,techniques used in proof-of-concept studies involving abnormally fertilized human zygotes were not well tolerated by normally fertilized zygotes. We have therefore developed an alternative approach based on transplanting pronuclei shortly after completion of meiosis rather than shortly before the first mitotic division. This promotes efficient development to the blastocyst stage with no detectable effect on aneuploidy or gene expression. After optimization,mtDNA carryover was reduced to textless2% in the majority (79%) of PNT blastocysts. The importance of reducing carryover to the lowest possible levels is highlighted by a progressive increase in heteroplasmy in a stem cell line derived from a PNT blastocyst with 4% mtDNA carryover. We conclude that PNT has the potential to reduce the risk of mtDNA disease,but it may not guarantee prevention.
View Publication