Pipino C et al. (OCT 2014)
Cellular reprogramming 16 5 331--344
Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking.
Trisomy 21 is the most common chromosomal abnormality and is associated primarily with cardiovascular,hematological,and neurological complications. A robust patient-derived cellular model is necessary to investigate the pathophysiology of the syndrome because current animal models are limited and access to tissues from affected individuals is ethically challenging. We aimed to derive induced pluripotent stem cells (iPSCs) from trisomy 21 human mid-trimester amniotic fluid stem cells (AFSCs) and describe their hematopoietic and neurological characteristics. Human AFSCs collected from women undergoing prenatal diagnosis were selected for c-KIT(+) and transduced with a Cre-lox-inducible polycistronic lentiviral vector encoding SOX2,OCT4,KLF-4,and c-MYC (50,000 cells at a multiplicity of infection (MOI) 1-5 for 72 h). The embryonic stem cell (ESC)-like properties of the AFSC-derived iPSCs were established in vitro by embryoid body formation and in vivo by teratoma formation in RAG2(-/-),$\$-chain(-/-),C2(-/-) immunodeficient mice. Reprogrammed cells retained their cytogenetic signatures and differentiated into specialized hematopoietic and neural precursors detected by morphological assessment,immunostaining,and RT-PCR. Additionally,the iPSCs expressed all pluripotency markers upon multiple rounds of freeze-thawing. These findings are important in establishing a patient-specific cellular platform of trisomy 21 to study the pathophysiology of the aneuploidy and for future drug discovery.
View Publication
Structural cardiac remodeling,accompanying cytoskeletal reorganization of cardiac cells,is a major clinical outcome of diastolic heart failure. A highly local Ca(2+) influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis,but it is obscure how the heart specifically decodes the local Ca(2+) influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca(2+) handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor,GEF-H1,participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2,and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally,pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.
View Publication
Thayanithy V et al. (APR 2014)
Experimental Cell Research 323 1 178--188
Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
Tunneling nanotubes (TnTs) are long,non-adherent,actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study,we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48. h; and this effect was most prominent in media conditions (low-serum,hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs,in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs,which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation,and also lipid raft formation as a potential biomarker for TnT-forming cells. textcopyright 2014 Elsevier Inc.
View Publication
Khatib MME et al. (MAY 2016)
Stem Cells Translational Medicine 5 5 694--702
Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration
Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms,yet their clinical translation has been compromised by their biosafety concern. Here,we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/ progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immu-nodeficient mice. Moreover,removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplanta-tion,ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable,depending on the oncogenic load,with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus,transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. STEM CELLS TRANSLATIONAL MEDICINE 2016;5:694–702 SIGNIFICANCE Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products,especially when reprogrammed with integrating vectors. Two major under-lying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzy-matic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in test-ing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature b cell phenotype would lead to safe islet replacement therapy for diabetes.
View Publication
Ady J et al. ( 2016)
Molecular therapy oncolytics 3 16029
Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection.
Tunneling nanotubes (TNTs) are ultrafine,filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here,we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP),which is encoded by the herpes simplex virus NV1066,from infected to uninfected recipient cells. Using time-lapse imaging,we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally,increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir,inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus,we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments.
View Publication
Ohene-Abuakwa Y et al. (JAN 2005)
Blood 105 2 838--46
Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect.
The erythroid defect in Diamond Blackfan anemia (DBA) is known to be intrinsic to the stem cell,but its molecular pathophysiology remains obscure. Using a 2-phase liquid erythroid culture system,we have demonstrated a consistent defect in DBA,regardless of clinical severity,including 3 first-degree relatives with normal hemoglobin levels but increased erythrocyte adenosine deaminase activity. DBA cultures were indistinguishable from controls until the end of erythropoietin (Epo)-free phase 1,but failed to demonstrate the normal synchronized wave of erythroid expansion and terminal differentiation on exposure to Epo. Dexamethasone increased Epo sensitivity of erythroid progenitor cells,and enhanced erythroid expansion in phase 2 in both normal and DBA cultures. In DBA cultures treated with dexamethasone,Epo sensitivity was comparable to normal,but erythroid expansion remained subnormal. In clonogenic phase 2 cultures,the number of colonies did not significantly differ between normal cultures and DBA,in the presence or absence of dexamethasone,and at both low and high Epo concentrations. However,colonies were markedly smaller in DBA under all conditions. This suggests that the Epo-triggered onset of terminal maturation is intact in DBA,and the defect lies down-stream of the Epo receptor,influencing survival and/or proliferation of erythroid progenitors.
View Publication
Houwerzijl EJ et al. (JAN 2004)
Blood 103 2 500--6
Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura.
To investigate whether altered megakaryocyte morphology contributes to reduced platelet production in idiopathic thrombocytopenic purpura (ITP),ultrastructural analysis of megakaryocytes was performed in 11 ITP patients. Ultrastructural abnormalities compatible with (para-)apoptosis were present in 78% +/- 14% of ITP megakaryocytes,which could be reversed by in vivo treatment with prednisone and intravenous immunoglobulin. Immunohistochemistry of bone marrow biopsies of ITP patients with extensive apoptosis showed an increased number of megakaryocytes with activated caspase-3 compared with normal (28% +/- 4% versus 0%). No difference,however,was observed in the number of bone marrow megakaryocyte colony-forming units (ITP,118 +/- 93/105 bone marrow cells; versus controls,128 +/- 101/105 bone marrow cells; P =.7). To demonstrate that circulating antibodies might affect megakaryocytes,suspension cultures of CD34+ cells were performed with ITP or normal plasma. Morphology compatible with (para-)apoptosis could be induced in cultured megakaryocytes with ITP plasma (2 of 10 samples positive for antiplatelet autoantibodies). Finally,the plasma glycocalicin index,a parameter of platelet and megakaryocyte destruction,was increased in ITP (57 +/- 70 versus 0.7 +/- 0.2; P =.009) and correlated with the proportion of megakaryocytes showing (para-) apoptotic ultrastructure (P =.02; r = 0.7). In conclusion,most ITP megakaryocytes show ultrastructural features of (para-) apoptosis,probably due to action of factors present in ITP plasma.
View Publication
Hø et al. (JAN 2015)
Stem Cell Research 14 1 39--53
Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells
The Mesenchymal-to-Epithelial Transition (MET) has been recognized as a crucial step for successful reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). Thus,it has been demonstrated,that the efficiency of reprogramming can be enhanced by promoting an epithelial expression program in cells,with a concomitant repression of key mesenchymal genes. However,a detailed characterization of the epithelial transition associated with the acquisition of a pluripotent phenotype is still lacking to this date. Here,we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming,as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6-12. days after electroporation,in synchrony with the upregulation of early pluripotency markers,and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT) which takes place during mammalian gastrulation.
View Publication