Borchin B et al. (DEC 2013)
Stem Cell Reports 1 6 620--631
Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs,the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here,we describe a method based on the use of a small-molecule GSK3?? inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3?? inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover,we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free,efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies,in vitro screenings,and disease modeling. ?? 2013 The Authors.
View Publication
Ilic D et al. (JAN 2012)
Cytotherapy 14 September 122--8
Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions.
BACKGROUND AIMS: Human embryonic stem (hES) cells hold great potential for cell therapy and regenerative medicine because of their pluripotency and capacity for self-renewal. The conditions used to derive and culture hES cells vary between and within laboratories depending on the desired use of the cells. Until recently,stem cell culture has been carried out using feeder cells,and culture media,that contain animal products. Recent advances in technology have opened up the possibility of both xeno-free and feeder-free culture of stem cells,essential conditions for the use of stem cells for clinical purposes. To date,however,there has been limited success in achieving this aim. METHODS,RESULTS AND CONCLUSIONS: Protocols were developed for the successful derivation of two normal and three specific mutation-carrying (SMC) (Huntington's disease and myotonic dystrophy 1) genomically stable hES cell lines,and their adaptation to feeder-free culture,all under xeno-free conditions.
View Publication
Zhang L et al. (JAN 2015)
Circulation: Heart Failure 8 1 156--166
Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast
BACKGROUND: Induced pluripotent stem cells (iPSCs) can be differentiated into potentially unlimited lineages of cell types for use in autologous cell therapy. However,the efficiency of the differentiation procedure and subsequent function of the iPSC-derived cells may be influenced by epigenetic factors that the iPSCs retain from their tissues of origin; thus,iPSC-derived cells may be more effective for treatment of myocardial injury if the iPSCs were engineered from cardiac-lineage cells,rather than dermal fibroblasts. METHODS AND RESULTS: We show that human cardiac iPSCs (hciPSCs) can be generated from cardiac fibroblasts and subsequently differentiated into exceptionally pure (textgreater92%) sheets of cardiomyocytes (CMs). The hciPSCs passed through all the normal stages of differentiation before assuming a CM identity. When using the fibrin gel-enhanced delivery of hciPSC-CM sheets at the site of injury in infarcted mouse hearts,the engraftment rate was 31.91%+/-5.75% at Day 28 post transplantation. The hciPSC-CM in the sheet also appeared to develop a more mature,structurally aligned phenotype 28 days after transplantation and was associated with significant improvements in cardiac function,vascularity,and reduction in apoptosis. CONCLUSIONS: These data strongly support the potential of hciPSC-CM sheet transplantation for the treatment of heart with acute myocardial infarction.
View Publication
Meng G and Rancourt DE (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 69--80
Derivation and maintenance of undifferentiated human embryonic stem cells
Human embryonic stem cells (hESCs) are self-renewing,pluripotent cells derived from the inner cell mass of blastocysts,early-stage embryos,or blastomeres. hESCs can be propagated indefinitely in an undifferentiated state in vitro and have the ability to differentiate into all cell types of the body. Therefore,these cells can potentially provide an unlimited source of cells and hold promise for transplantation therapy,regenerative medicine,drug screening and discovery,and basic scientific research. Surplus human embryos donated for hESC derivation are extremely valuable,and inefficient derivation of hESCs would be a terrible waste of human embryos. Here,we describe a method for isolating hESC lines from human blastocysts with high efficiency. We also describe the methods for excising differentiated areas from partially differentiated hESC colonies and re-isolating undifferentiated hESCs from extremely differentiated hESC colonies.
View Publication
Strö et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 337--344
Derivation of 30 human embryonic stem cell lines-improving the quality
We have derived 30 human embryonic stem cell lines from supernumerary blastocysts in our laboratory. During the derivation process,we have studied new and safe method to establish good quality lines. All our human embryonic stem cell lines have been derived using human foreskin fibroblasts as feeder cells. The 26 more recent lines were derived in a medium containing serum replacement instead of fetal calf serum. Mechanical isolation of the inner cell mass using flexible metal needles was used in deriving the 10 latest lines. The lines are karyotypically normal,but culture adaptation in two lines has been observed. Our human embryonic stem cell lines are banked,and they are available for researchers.
View Publication
Eremeev AV et al. ( )
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR,Biological sciences sections / translated from Russian 426 293--5
Derivation of a novel human embryonic stem cell line under serum-free and feeder-free conditions.
Lippmann ES et al. (AUG 2012)
Nature biotechnology 30 8 783--791
Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.
The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover,because of its barrier properties,this endothelial interface restricts uptake of neurotherapeutics. Thus,a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues,including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes,including well-organized tight junctions,appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably,they respond to astrocytes,acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2),and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.
View Publication
Lei IL et al. (JAN 2015)
Journal of visualized experiments : JoVE January 52047. doi: 10.3791/52047.
Derivation of cardiac progenitor cells from embryonic stem cells.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes,smooth muscle cells (SMC),and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs,differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result,numerous strategies have been developed to derive CPCs from ESCs. In this protocol,differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs,ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus,CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.
View Publication
Naylor RW et al. ( 2016)
PloS one 11 10 e0165464
Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells.
Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However,treatment is restricted to corneal transplantation,which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study,hiPSCs were successfully differentiated into neural crest cells (NCCs),the embryonic precursor to keratocytes,and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies.
View Publication
Lungova V et al. ( 2014)
1307 237--243
Derivation of Epithelial Cells from Human Embryonic Stem Cells as an In Vitro Model of Vocal Mucosa
Vocal fold epithelial cells are very difficult to study as the vocal fold epithelial cell lines do not exist and they cannot be removed from the healthy larynx without engendering a significant and unacceptable risk to vocal fold function. Here,we describe the procedure to create an engineered vocal fold tissue construct consisting of the scaffold composed of the collagen 1 gel seeded with human fibroblasts and simple epithelial progenitors seeded on the scaffold and cultivated at air-liquid interface for 19-21 days to derive the stratified squamous epithelium. This model of vocal fold mucosa is very similar in morphology,gene expression,and phenotypic characteristics to native vocal fold epithelial cells and the underlying lamina propria and,therefore,offers a promising approach to studying vocal fold biology and biomechanics in health and disease.
View Publication
Meng G et al. (JUN 2010)
Biochemistry and cell biology = Biochimie et biologie cellulaire 88 3 479--490
Derivation of human embryonic stem cell lines after blastocyst microsurgery.
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. Because of their ability to differentiate into a variety of cell types,human embryonic stem cells (hESCs) provide an unlimited source of cells for clinical medicine and have begun to be used in clinical trials. Presently,although several hundred hESC lines are available in the word,only few have been widely used in basic and applied research. More and more hESC lines with differing genetic backgrounds are required for establishing a bank of hESCs. Here,we report the first Canadian hESC lines to be generated from cryopreserved embryos and we discuss how we navigated through the Canadian regulatory process. The cryopreserved human zygotes used in this study were cultured to the blastocyst stage,and used to isolate ICM via microsurgery. Unlike previous microsurgery methods,which use specialized glass or steel needles,our method conveniently uses syringe needles for the isolation of ICM and subsequent hESC lines. ICM were cultured on MEF feeders in medium containing FBS or serum replacer (SR). Resulting outgrowths were isolated,cut into several cell clumps,and transferred onto fresh feeders. After more than 30 passages,the two hESC lines established using this method exhibited normal morphology,karyotype,and growth rate. Moreover,they stained positively for a variety of pluripotency markers and could be differentiated both in vitro and in vivo. Both cell lines could be maintained under a variety of culture conditions,including xeno-free conditions we have previously described. We suggest that this microsurgical approach may be conducive to deriving xeno-free hESC lines when outgrown on xeno-free human foreskin fibroblast feeders.
View Publication
T. E. Ludwig et al. (feb 2006)
Nature biotechnology 24 2 185--7
Derivation of human embryonic stem cells in defined conditions.
We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells,but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.
View Publication