Lagier-Tourenne C et al. (NOV 2012)
Nature neuroscience 15 11 1488--1497
Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs
FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from textgreater5,500 genes in mouse and human brain,primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern,consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of textgreater950 mRNAs,most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain,but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell-derived human neurons and in
View Publication
Sigova Aa et al. (FEB 2013)
Proceedings of the National Academy of Sciences of the United States of America 110 8 2876--81
Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells.
Many long noncoding RNA (lncRNA) species have been identified in mammalian cells,but the genomic origin and regulation of these molecules in individual cell types is poorly understood. We have generated catalogs of lncRNA species expressed in human and murine embryonic stem cells and mapped their genomic origin. A surprisingly large fraction of these transcripts (textgreater60%) originate from divergent transcription at promoters of active protein-coding genes. The divergently transcribed lncRNA/mRNA gene pairs exhibit coordinated changes in transcription when embryonic stem cells are differentiated into endoderm. Our results reveal that transcription of most lncRNA genes is coordinated with transcription of protein-coding genes.
View Publication
Neely MD et al. (JUN 2012)
ACS chemical neuroscience 3 6 482--91
DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction.
Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist,Noggin,and the small molecule SB431542,respectively,induces efficient neuralization of hiPSCs,a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost,consistent activity,and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1,a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration,we could selectively modulate the number of SOX1 expressing cells,whereas PAX6,another neural precursor marker,remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations,therefore,suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons,a subset of which also express tyrosine hydroxylase. Thus,the combined use of DMH1,a highly specific BMP-pathway inhibitor,and SB431542,a TGF-β1-pathway specific inhibitor,provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.
View Publication
Czysz K et al. (FEB 2015)
PLoS ONE 10 2 e0117689
Dmso efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation
BACKGROUND Definitive endoderm (DE) is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver,lungs,thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1,2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO) to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. MATERIALS AND METHODS Human embryonic stem cells (hESC) were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry,real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG),definitive endoderm (SOX17,CXCR4 & GATA4) and hepatic (AFP & ALB) genes to generate differentiation stage-specific signatures. RESULTS Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG,accompanied by an increase expression of the DE genes SOX17,CXCR4 and GATA4. Importantly,the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.
View Publication
Momcilovic O et al. (JAN 2010)
PLoS ONE 5 10 e13410
DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.
BACKGROUND: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming,which uses a defined set of transcription factors,iPS cells represent important sources of patient-specific cells for clinical applications. However,before these cells can be used in therapeutic designs,it is essential to understand their genetic stability. METHODOLOGY/PRINCIPAL FINDINGS: Here,we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation,iPS cells activate checkpoint signaling,evidenced by phosphorylation of ATM,NBS1,CHEK2,and TP53,localization of ATM to the double strand breaks (DSB),and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2) phase of the cell cycle,displaying a lack of the G(1)/S cell cycle arrest similar to human embryonic stem (ES) cells. Furthermore,both cell types remove DSB within six hours of γ-irradiation,form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally,we report elevated expression of genes involved in DNA damage signaling,checkpoint function,and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts. CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage,dramatic changes in cell cycle structure,including a high percentage of cells in the S phase,increased radiosensitivity and loss of DNA damage-induced G(1)/S cell cycle arrest,were observed in stem cells generated by induced pluripotency.
View Publication
Elabd C et al. (OCT 2013)
The Journal of Cell Biology 203 1 73--85
DNA methyltransferase-3–dependent nonrandom template segregation in differentiating embryonic stem cells
Asymmetry of cell fate is one fundamental property of stem cells,in which one daughter cell self-renews,whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms,such as plants,fungi,and mammals,has already been shown. However,before this current work,asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs),and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing,differentiating human and mouse ESCs. Moreover,we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3),indicating a molecular mechanism that regulates this phenomenon. Furthermore,our data support the hypothesis that retention of chromatids with the old" template DNA preserves the epigenetic memory of cell fate�
View Publication
Luo LZ et al. (JAN 2012)
PLoS ONE 7 3 e30541
DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells.
The potential for human disease treatment using human pluripotent stem cells,including embryonic stem cells and induced pluripotent stem cells (iPSCs),also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies,which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study,a comparison of DNA repair pathways in pluripotent cells,as compared to those in non-pluripotent cells,demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair,we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells,while differentiated cells lacked response to this stimulus,and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition,the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype,but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together,these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines,in order to characterize their genomic stability,prior to their pre-clinical and clinical use.
View Publication
DNA targeting specificity of RNA-guided Cas9 nucleases.
The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here,we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates textgreater700 guide RNA variants and SpCas9-induced indel mutation levels at textgreater100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner,sensitive to the number,position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications,we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
View Publication
Guo L et al. (AUG 2011)
Molecular pharmacology 80 2 321--7
DNA-dependent protein kinase and ataxia telangiectasia mutated (ATM) promote cell survival in response to NK314, a topoisomerase IIα inhibitor.
4-Hydroxy-5-methoxy-2,3-dihydro-1H-[1,3]benzodioxolo[5,6-c]pyrrolo[1,2-f]-phenanthridium chloride (NK314) is a benzo[c] phenanthridine alkaloid that inhibits topoisomerase IIα,leading to the generation of DNA double-strand breaks (DSBs) and activating the G(2) checkpoint pathway. The purpose of the present studies was to investigate the DNA intercalating properties of NK314,to evaluate the DNA repair mechanisms activated in cells that may lead to resistance to NK314,and to develop mechanism-based combination strategies to maximize the antitumor effect of the compound. A DNA unwinding assay indicated that NK314 intercalates in DNA,a property that likely cooperates with its ability to trap topoisomerase IIα in its cleavage complex form. The consequence of this is the formation of DNA DSBs,as demonstrated by pulsed-field gel electrophoresis and H2AX phosphorylation. Clonogenic assays demonstrated a significant sensitization in NK314-treated cells deficient in DNA-dependent protein kinase (DNA-PK) catalytic subunit,Ku80,ataxia telangiectasia mutated (ATM),BRCA2,or XRCC3 compared with wild-type cells,indicating that both nonhomologous end-joining and homologous recombination DNA repair pathways contribute to cell survival. Furthermore,both the DNA-PK inhibitor 8-(4-dibenzothienyl)-2-(4-morpholinyl)-4H-1-benzopyran-4-one (NU7441) and the ATM inhibitor 2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one (KU55933) significantly sensitized cells to NK314. We conclude that DNA-PK and ATM contribute to cell survival in response to NK314 and could be potential targets for abrogating resistance and maximizing the antitumor effect of NK314.
View Publication
Lopez-Bertoni H et al. (JUL 2015)
Oncogene 34 30 3994--4004
DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2.
Cancer stem-like cells represent poorly differentiated multipotent tumor-propagating cells that contribute disproportionately to therapeutic resistance and tumor recurrence. Transcriptional mechanisms that control the phenotypic conversion of tumor cells lacking tumor-propagating potential to tumor-propagating stem-like cells remain obscure. Here we show that the reprogramming transcription factors Oct4 and Sox2 induce glioblastoma cells to become stem-like and tumor-propagating via a mechanism involving direct DNA methyl transferase (DNMT) promoter transactivation,resulting in global DNA methylation- and DNMT-dependent downregulation of multiple microRNAs (miRNAs). We show that one such downregulated miRNA,miRNA-148a,inhibits glioblastoma cell stem-like properties and tumor-propagating potential. This study identifies a novel and targetable molecular circuit by which glioma cell stemness and tumor-propagating capacity are regulated.
View Publication
Pozzi S et al. (JUL 2006)
Experimental hematology 34 7 934--42
Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation.
OBJECTIVE: Multipotent mesenchymal stromal cells (MSCs) are endowed with multilineage differentiative potential and immunomodulatory properties. It is still a matter of debate whether donor MSCs have sustained engraftment potential in host bone marrow (BM) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The aim of this study was to analyze the donor/recipient origin of MSCs in children receiving allogeneic either BM or cord blood (CB) transplantation. METHODS: Thirty-seven pediatric patients undergoing allo-HSCT for either a malignant or a nonmalignant disorder were enrolled in the study; 19 received CB and 18 BM transplantation. Results were compared with those obtained in 14 adults given BM transplantation for either malignant or nonmalignant disorders. MSCs were grown from BM aspirates obtained 1-17 and 2-192 months after allo-HSCT in pediatric and adult patients,respectively. MSC samples at the third-fourth passage were phenotypically characterized. Donor/recipient origin of MSCs was assessed by amelogenin assay and microsatellite analysis. RESULTS: MSCs could be grown from 30 of 37 children; at the third-fourth passage MSCs resulted positive (textgreater or = 98%) for CD73,CD105,CD106,CD29,CD13,CD44 and negative (textless or = 1%) for CD34,CD45,CD14. Mixed chimerism with donor cells was observed in 4 BM and 5 CB transplantation recipients,respectively; full recipient chimerism was detected in the remaining children. Full recipient MSC chimerism was observed also in all assessable (12/14) adult patients. CONCLUSIONS: BM of pediatric patients might be a more favorable milieu than that of adults for sustained engraftment of transplanted MSCs. MSCs able to engraft in the host can be transferred with cryopreserved CB units.
View Publication
Quang T et al. (JAN 2014)
PloS one 9 1 e86031
Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells.
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general,4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types,whereas in feeder-free systems,up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0,0.4 or 4 ng/ml of bFGF for up to 23 passages,as well as parallel cultures of H9 and DF19 in media supplemented with 4,20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested,bFGF supplement demonstrated inhibitory effect over growth expansion,single cell colonization and recovery from freezing in a dosage dependent manner. In addition,bFGF exerted differential effects on different cell lines,inducing H1 and DF19 differentiation at 4 ng/ml or higher,while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0,0.4 or 4 ng/ml bFGF excluding H1-4 ng,as well as H9 cultured in 4,20 and 100 ng/ml bFGF. However,DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells,and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
View Publication