Loh Y-HH et al. (JAN 2012)
Current protocols in stem cell biology Chapter 4 SUPPL.21 Unit4A.5
Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA
The generation of patient-specific induced pluripotent stem (iPS) cells provides an invaluable resource for cell therapy,in vitro modeling of human disease,and drug screening. To date,most human iPS cells have been generated with integrating retro- and lenti-viruses and are limited in their potential utility because residual transgene expression may alter their differentiation potential or induce malignant transformation. Alternatively,transgene-free methods using adenovirus and protein transduction are limited by low efficiency. This unit describes a protocol for the generation of transgene-free human induced pluripotent stem cells using retroviral transfection of a single vector,which includes the coding sequences of human OCT4,SOX2,KLF4,and cMYC linked with picornaviral 2A plasmids. Moreover,after reprogramming has been achieved,this cassette can be removed using mRNA transfection of Cre recombinase. The method described herein to excise reprogramming factors with ease and efficiency facilitates the experimental generation and use of transgene-free human iPS cells.
View Publication
Kadari A et al. ( 2014)
Stem cell research & therapy 5 2 47
Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells.
Integrating viruses represent robust tools for cellular reprogramming; however,the presence of viral transgenes in induced pluripotent stem cells (iPSCs) is deleterious because it holds the risk of insertional mutagenesis leading to malignant transformation. Here,we combine the robustness of lentiviral reprogramming with the efficacy of Cre recombinase protein transduction to derive iPSCs devoid of transgenes. By genome-wide analysis and targeted differentiation towards the cardiomyocyte lineage,we show that transgene-free iPSCs are superior to iPSCs before Cre transduction. Our study provides a simple,rapid and robust protocol for the generation of clinical-grade iPSCs suitable for disease modeling,tissue engineering and cell replacement therapies.
View Publication
Zhang J et al. (SEP 2016)
Stem cell research & therapy 7 1 136
Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
BACKGROUND Recently,accumulating evidence has shown that exosomes,the naturally secreted nanocarriers of cells,can exert therapeutic effects in various disease models in the absence of parent cells. However,application of exosomes in bone defect repair and regeneration has been rarely reported,and little is known regarding their underlying mechanisms. METHODS Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos) were combined with tricalcium phosphate (β-TCP) to repair critical-sized calvarial bone defects,and the efficacy was assessed by histological examination. We evaluated the in vitro effects of hiPSC-MSC-Exos on the proliferation,migration,and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by cell-counting,scratch assays,and qRT-PCR,respectively. Gene expression profiling and bioinformatics analyses were also used to identify the underlying mechanisms in the repair. RESULTS We found that the exosome/β-TCP combination scaffolds could enhance osteogenesis as compared to pure β-TCP scaffolds. In vitro assays showed that the exosomes could release from β-TCP and could be internalized by hBMSCs. In addition,the internalization of exosomes into hBMSCs could profoundly enhance the proliferation,migration,and osteogenic differentiation of hBMSCs. Furthermore,gene expression profiling and bioinformatics analyses demonstrated that exosome/β-TCP combination scaffolds significantly altered the expression of a network of genes involved in the PI3K/Akt signaling pathway. Functional studies further confirmed that the PI3K/Akt signaling pathway was the critical mediator during the exosome-induced osteogenic responses of hBMSCs. CONCLUSIONS We propose that the exosomes can enhance the osteoinductivity of β-TCP through activating the PI3K/Akt signaling pathway of hBMSCs,which means that the exosome/β-TCP combination scaffolds possess better osteogenesis activity than pure β-TCP scaffolds. These results indicate that naturally secreted nanocarriers-exosomes can be used as a bioactive material to improve the bioactivity of the biomaterials,and that hiPS-MSC-Exos combined with β-TCP scaffolds can be potentially used for repairing bone defects.
View Publication
Giassi LJ et al. (AUG 2008)
Experimental biology and medicine (Maywood,N.J.) 233 8 997--1012
Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation,we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells,cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid,B-lymphoid,and erythroid lineages,but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization,which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.
View Publication
Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors.
Recent reports have documented the differentiation of human pluripotent stem cells toward the skeletal myogenic lineage using transgene- and cell purification-free approaches. Although these protocols generate myocytes,they have not demonstrated scalability,safety,and in vivo engraftment,which are key aspects for their future clinical application. Here we recapitulate one prominent protocol,and show that it gives rise to a heterogeneous cell population containing myocytes and other cell types. Upon transplantation,the majority of human donor cells could not contribute to myofiber formation. As a proof-of-principle,we incorporated the inducible PAX7 lentiviral system into this protocol,which then enabled scalable expansion of a homogeneous population of skeletal myogenic progenitors capable of forming myofibers in vivo. Our findings demonstrate the methods for scalable expansion of PAX7(+) myogenic progenitors and their purification are critical for practical application to cell replacement treatment of muscle degenerative diseases.
View Publication
Danet G et al. (JUL 2003)
The Journal of clinical investigation 112 1 126--35
Expansion of human SCID-repopulating cells under hypoxic conditions.
It has been proposed that bone marrow (BM) hematopoietic stem and progenitor cells are distributed along an oxygen (O2) gradient,where stem cells reside in the most hypoxic areas and proliferating progenitors are found in O2-rich areas. However,the effects of hypoxia on human hematopoietic stem cells (HSCs) have not been characterized. Our objective was to evaluate the functional and molecular responses of human BM progenitors and stem cells to hypoxic conditions. BM lineage-negative (Lin-) CD34+CD38- cells were cultured in serum-free medium under 1.5% O2 (hypoxia) or 20% O2 (normoxia) for 4 days. Using limiting dilution analysis,we demonstrate that the absolute number of SCID-repopulating cells (SRCs) increased by 5.8-fold in hypoxic cultures compared with normoxia,and by 4.2-fold compared with freshly isolated Lin-CD34+CD38- cells. The observed increase in BM-repopulating activity was associated with a preferential expansion of Lin-CD34+CD38- cells. We also demonstrate that,in response to hypoxia,hypoxia-inducible factor-1alpha protein was stabilized,surface expression of angiogenic receptors was upregulated,and VEGF secretion increased in BM Lin-CD34+ cultures. The use of low O2 levels to enhance the survival and/or self-renewal of human BM HSCs in vitro represents an important advance and could have valuable clinical implications.
View Publication