Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells
Pluripotent stem cells have the potential to become most of the cell types that make up an organism. However,the signals that trigger these cells to turn into neurons rather than lung cells or muscle cells,for example,are not fully understood. Proteins called growth factors are known to have a role in this process,as are transcription factors,but it is not clear if other factors are also involved. In an attempt to identify additional mechanisms that could contribute to the formation of neurons,Sun et al. screened more than 2,000 small molecules for their ability to transform mouse pluripotent stem cells into neurons in cell culture. Surprisingly,they found that a compound called selamectin,which is used to treat parasitic flatworm infections,also triggered stem cells to turn into neurons. Selamectin works by blocking a particular type of ion channel in flatworms,but this ion channel is not found in vertebrates,which means that selamectin must be promoting the formation of neurons in mice via a different mechanism. Given that a drug related to selamectin is known to act on a subtype of receptors for the neurotransmitter GABA,Sun et al. wondered whether these receptors—known as GABAA receptors—might also underlie the effects of selamectin. Consistent with this idea,drugs that increased GABAA activity stimulated the formation of neurons,whereas drugs that reduced GABAA function blocked the effects of selamectin. In addition,Sun et al. showed that selamectin triggers human embryonic stem cells to become neurons,and that it also promotes the formation of new neurons in developing zebrafish in vivo. As well as revealing an additional mechanism for the formation of neurons from stem cells,the screening technique introduced by Sun et al. could help to identify further pro-neuronal molecules,which could aid the treatment of neurodevelopmental and neurodegenerative disorders. DOI: [http://dx.doi.org/10.7554/eLife.00508.002][1] [1]: /lookup/doi/10.7554/eLife.00508.002
View Publication
Oehler L et al. (SEP 2003)
Blood 102 6 2240--2
Imatinib mesylate inhibits autonomous erythropoiesis in patients with polycythemia vera in vitro.
The overproduction of red blood cells in patients with polycythemia vera (PV) is reflected in vitro by the formation of erythroid burst-forming units (BFU-Es) in the absence of exogenous erythropoietin. In contrast to other myeloproliferative disorders,the molecular mechanism of PV is unknown and no specific chromosomal abnormality has been described. We speculated that imatinib mesylate may reverse the pathological overproduction of red cells by inhibition of autonomous erythropoiesis. In the present study,imatinib mesylate was found to either block or strongly inhibit autonomous BFU-E formation in vitro in all patients tested. Moreover,autonomous BFU-E growth was also markedly reduced by exposure of PV cells to imatinib mesylate prior to cultivation in semisolid medium. The profound effect of imatinib mesylate on autonomous erythropoiesis suggests the involvement of an as yet unidentified kinase in the pathogenesis of PV and should provide the rationale for a forthcoming clinical trial.
View Publication
Patriarchi T et al. (JUN 2016)
European journal of human genetics : EJHG 24 6 871--880
Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1(+/-) patients and in foxg1(+/-) mice.
Rett syndrome (RTT) is a severe neurodevelopmental disorder associated with mutations in either MECP2,CDKL5 or FOXG1. The precise molecular mechanisms that lead to the pathogenesis of RTT have yet to be elucidated. We recently reported that expression of GluD1 (orphan glutamate receptor $\$-1 subunit) is increased in iPSC-derived neurons obtained from patients with mutations in either MECP2 or CDKL5. GluD1 controls synaptic differentiation and shifts the balance between excitatory and inhibitory synapses toward the latter. Thus,an increase in GluD1 might be a critical factor in the etiology of RTT by affecting the excitatory/inhibitory balance in the developing brain. To test this hypothesis,we generated iPSC-derived neurons from FOXG1(+/-) patients. We analyzed mRNA and protein levels of GluD1 together with key markers of excitatory and inhibitory synapses in these iPSC-derived neurons and in Foxg1(+/-) mouse fetal (E11.5) and adult (P70) brains. We found strong correlation between iPSC-derived neurons and fetal mouse brains,where GluD1 and inhibitory synaptic markers (GAD67 and GABA AR-$\$1) were increased,whereas the levels of a number of excitatory synaptic markers (VGLUT1,GluA1,GluN1 and PSD-95) were decreased. In adult mice,GluD1 was decreased along with all GABAergic and glutamatergic markers. Our findings further the understanding of the etiology of RTT by introducing a new pathological event occurring in the brain of FOXG1(+/-) patients during embryonic development and its time-dependent shift toward a general decrease in brain synapses.
View Publication
England SJ et al. (MAR 2011)
Blood 117 9 2708--17
Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus.
In the hematopoietic hierarchy,only stem cells are thought to be capable of long-term self-renewal. Erythroid progenitors derived from fetal or adult mammalian hematopoietic tissues are capable of short-term,or restricted (10(2)- to 10(5)-fold),ex vivo expansion in the presence of erythropoietin,stem cell factor,and dexamethasone. Here,we report that primary erythroid precursors derived from early mouse embryos are capable of extensive (10(6)- to 10(60)-fold) ex vivo proliferation. These cells morphologically,immunophenotypically,and functionally resemble proerythroblasts,maintaining both cytokine dependence and the potential,despite prolonged culture,to generate enucleated erythrocytes after 3-4 maturational cell divisions. This capacity for extensive erythroblast self-renewal is temporally associated with the emergence of definitive erythropoiesis in the yolk sac and its transition to the fetal liver. In contrast,hematopoietic stem cell-derived definitive erythropoiesis in the adult is associated almost exclusively with restricted ex vivo self-renewal. Primary primitive erythroid precursors,which lack significant expression of Kit and glucocorticoid receptors,lack ex vivo self-renewal capacity. Extensively self-renewing erythroblasts,despite their near complete maturity within the hematopoietic hierarchy,may ultimately serve as a renewable source of red cells for transfusion therapy.
View Publication
Wang X et al. (FEB 2016)
Stem cells (Dayton,Ohio) 34 2 380--391
Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.
Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However,the generation methods reported so far vary greatly in quality and efficiency. Here,we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs�
View Publication
Wang Z et al. ( 2016)
PLoS ONE 11 3 e0150731
Immunological properties of corneal epithelial-like cells derived from human embryonic stem cells
Transplantation of ex vivo expanded corneal limbal stem cells (LSCs) has been the main treatment for limbal stem cell deficiency,although the shortage of donor corneal tissues remains a major concern for its wide application. Due to the development of tissue engineering,embryonic stem cells (ESCs)-derived corneal epithelial-like cells (ESC-CECs) become a new direction for this issue. However,the immunogenicity of ESC-CECs is a critical matter to be solved. In the present study,we explored the immunological properties of ESC-CECs,which were differentiated from ESCs. The results showed that ESC-CECs had a similar character and function with LSCs both in vitro and in vivo. In ESC-CECs,a large number of genes related with immune response were down-regulated. The expressions of MHC-I,MHC-II,and co-stimulatory molecules were low,but the expression of HLA-G was high. The ESC-CECs were less responsible for T cell proliferation and NK cell lysis in vitro,and there was less immune cell infiltration after transplantation in vivo compared with LSCs. Moreover,the immunological properties were not affected by interferon-$$. All these results indicated a low immunogenicity of ESC-CECs,and they can be promising in clinical use.
View Publication
Koh K-R et al. (MAY 2005)
Blood 105 10 3833--40
Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis.
Immunomodulatory derivative (IMiD) CC-4047,a new analog of thalidomide,directly inhibits growth of B-cell malignancies in vivo and in vitro and exhibits stronger antiangiogenic activity than thalidomide. However,there is little information on whether CC-4047 affects normal hematopoiesis. Here we investigated the effect of CC-4047 on lineage commitment and differentiation of hematopoietic stem cells. We found that CC-4047 effectively inhibits erythroid cell colony formation from CD34+ cells and increases the frequency of myeloid colonies. We also demonstrate that development of both erythropoietin-independent and erythropoietin-dependent red cell progenitors was strongly inhibited by CC-4047,while terminal red cell differentiation was unaffected. DNA microarray analysis revealed that red cell transcription factors,including GATA-1,GATA-2,erythroid Kruppel-like factor (EKLF),and growth factor independence-1B (Gfi-1b),were down-regulated in CC-4047-treated CD34+ cells,while myeloid transcription factors such as CCAAT/enhancer binding protein-alpha (C/EBPalpha),C/EBPdelta,and C/EBPepsilon were induced. Analysis of cytokine secretion indicated that CC-4047 induced secretion of cytokines that enhance myelopoiesis and inhibit erythropoiesis. In conclusion,these data indicate that CC-4047 might directly influence lineage commitment of hematopoietic cells by increasing the propensity of stem and/or progenitor cells to undergo myeloid cell development and concomitantly inhibiting red cell development. Therefore,CC-4047 provides a valuable tool to study the mechanisms underlying lineage commitment.
View Publication
A. E. In 't Veld et al. (sep 2019)
International journal of molecular sciences 20 19
Immunomonitoring of Tacrolimus in Healthy Volunteers: The First Step from PK- to PD-Based Therapeutic Drug Monitoring?
Therapeutic drug monitoring is routinely performed to maintain optimal tacrolimus concentrations in kidney transplant recipients. Nonetheless,toxicity and rejection still occur within an acceptable concentration-range. To have a better understanding of the relationship between tacrolimus dose,tacrolimus concentration,and its effect on the target cell,we developed functional immune tests for the quantification of the tacrolimus effect. Twelve healthy volunteers received a single dose of tacrolimus,after which intracellular and whole blood tacrolimus concentrations were measured and were related to T cell functionality. A significant correlation was found between tacrolimus concentrations in T cells and whole blood concentrations (r = 0.71,p = 0.009),while no correlation was found between tacrolimus concentrations in peripheral blood mononuclear cells (PBMCs) and whole blood (r = 0.35,p = 0.27). Phytohemagglutinin (PHA) induced the production of IL-2 and IFN$\gamma$,as well as the inhibition of CD71 and CD154 expression on T cells at 1.5 h post-dose,when maximum tacrolimus levels were observed. Moreover,the in vitro tacrolimus effect of the mentioned markers corresponded with the ex vivo effect after dosing. In conclusion,our results showed that intracellular tacrolimus concentrations mimic whole blood concentrations,and that PHA-induced cytokine production (IL-2 and IFN$\gamma$) and activation marker expression (CD71 and CD154) are suitable readout measures to measure the immunosuppressive effect of tacrolimus on the T cell.
View Publication
Cassidy L et al. (MAY 2013)
Journal of Biomarkers 2013 3 1--7
Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells
Pluripotent stem cell markers can be useful for diagnostic evaluation of human tumors. The novel pluripotent marker stage-specific embryonic antigen-5 (SSEA-5) is expressed in undifferentiated human induced pluripotent cells (iPSCs),but little is known about SSEA-5 expression in other primitive tissues (e.g.,human tumors). We evaluated SSEA-5 immunoreactivity patterns in human tumors,cell lines,teratomas,and iPS cells together with another pluripotent cell surface marker L1 cell adhesion molecule (L1CAM). We tested two hypotheses: (1) SSEA-5 and L1CAM would be immunoreactive and colocalized in human tumors; (2) SSEA-5 and L1CAM immunoreactivity would persist in iPSCs following retinal differentiating treatment. SSEA-5 immunofluorescence was most pronounced in primitive tumors,such as embryonal carcinoma. In tumor cell lines,SSEA-5 was highly immunoreactive in Capan-1 cells,while L1CAM was highly immunoreactive in U87MG cells. SSEA-5 and L1CAM showed colocalization in undifferentiated iPSCs,with immunopositive iPSCs remaining after 20 days of retinal differentiating treatment. This is the first demonstration of SSEA-5 immunoreactivity in human tumors and the first indication of SSEA-5 and L1CAM colocalization. SSEA-5 and L1CAM warrant further investigation as potentially useful tumor markers for histological evaluation or as markers to monitor the presence of undifferentiated cells in iPSC populations prior to therapeutic use.
View Publication
Swijnenburg R-JJ et al. (SEP 2008)
Proc Natl Acad Sci U S A 105 35 12991--6
Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts
Given their self-renewing and pluripotent capabilities,human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However,the host immune response against transplanted hESCs is not well characterized. In fact,controversy remains as to whether hESCs have immune-privileged properties. To address this issue,we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death,suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses,resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover,we have found CD4(+) T cells to be an important modulator of hESC immune-mediated rejection. Finally,we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together,these data suggest that hESCs are immunogenic,trigger both cellular and humoral-mediated pathways,and,as a result,are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.
View Publication
C. Kropp et al. (10 2016)
Stem cells translational medicine 5 1289-1301
Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.
The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors,we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 X 10(6) cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry,quantitative reverse-transcriptase polymerase chain reaction,and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures,underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly,physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism,suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. SIGNIFICANCE Human pluripotent stem cells (hPSCs) are a unique source for the,in principle,unlimited production of functional human cell types in vitro,which are of high value for therapeutic and industrial applications. This study applied single-use,clinically compliant bioreactor technology to develop advanced,matrix-free,and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to compare established conditions with this novel culture strategy,unexpected physiological features of hPSCs were discovered. These data allow a more rational process development,providing significant progress in the field of translational stem cell research and medicine.
View Publication
Tomita-Mitchell A et al. (DEC 2016)
Physiological genomics 48 12 912--921
Impact of MYH6 variants in hypoplastic left heart syndrome.
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance,its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS,identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants,including novel,missense,in-frame deletion,premature stop,de novo,and compound heterozygous variants,were significantly enriched in HLHS cases (P textless 1 × 10(-5)). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P textless 1 × 10(-2)). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes,notably upregulation of the β-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P textless 1 × 10(-3)). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P textless 1 × 10(-2)),while revealing defective cardiomyogenic differentiation. Rare,damaging variants in MYH6 are enriched in HLHS,affect molecular expression of contractility genes,and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications.
View Publication