Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool.
The stem cell factor (SCF)/Kit system has served as a classic model in deciphering molecular signaling events in the hematopoietic compartment,and Kit expression is a most critical marker for hematopoietic stem cells (HSCs) and progenitors. However,it remains to be elucidated how Kit expression is regulated in HSCs. Herein we report that a cytoplasmic tyrosine phosphatase Shp2,acting downstream of Kit and other RTKs,promotes Kit gene expression,constituting a Kit-Shp2-Kit signaling axis. Inducible ablation of PTPN11/Shp2 resulted in severe cytopenia in BM,spleen,and peripheral blood in mice. Shp2 removal suppressed the functional pool of HSCs/progenitors,and Shp2-deficient HSCs failed to reconstitute lethally irradiated recipients because of defects in homing,self-renewal,and survival. We show that Shp2 regulates coordinately multiple signals involving up-regulation of Kit expression via Gata2. Therefore,this study reveals a critical role of Shp2 in maintenance of a functional HSC/progenitor pool in adult mammals,at least in part through a kinase-phosphatase-kinase cascade.
View Publication
Kharas MG et al. (JAN 2007)
Blood 109 2 747--55
KLF4 suppresses transformation of pre-B cells by ABL oncogenes.
Genes that are strongly repressed after B-cell activation are candidates for being inactivated,mutated,or repressed in B-cell malignancies. Krüppel-like factor 4 (Klf4),a gene down-regulated in activated murine B cells,is expressed at low levels in several types of human B-cell lineage lymphomas and leukemias. The human KLF4 gene has been identified as a tumor suppressor gene in colon and gastric cancer; in concordance with this,overexpression of KLF4 can suppress proliferation in several epithelial cell types. Here we investigate the effects of KLF4 on pro/pre-B-cell transformation by v-Abl and BCR-ABL,oncogenes that cause leukemia in mice and humans. We show that overexpression of KLF4 induces arrest and apoptosis in the G1 phase of the cell cycle. KLF4-mediated death,but not cell-cycle arrest,can be rescued by Bcl-XL overexpression. Transformed pro/pre-B cells expressing KLF4 display increased expression of p21CIP and decreased expression of c-Myc and cyclin D2. Tetracycline-inducible expression of KLF4 in B-cell progenitors of transgenic mice blocks transformation by BCR-ABL and depletes leukemic pre-B cells in vivo. Collectively,our work identifies KLF4 as a putative tumor suppressor in B-cell malignancies.
View Publication
He X et al. (MAY 2016)
Nucleic acids research 44 9 e85
Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which,however,has focused on HDR-based strategies and was proven inefficient. Here,we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs,and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy,integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells,and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
View Publication
Suzuki DE et al. (JUN 2014)
Stem cells and development 23 11 1266--1274
Knockdown of E2F2 inhibits tumorigenicity, but preserves stemness of human embryonic stem cells.
Tumorigenicity of human pluripotent stem cells is a major threat limiting their application in cell therapy protocols. It remains unclear,however,whether suppression of tumorigenic potential can be achieved without critically affecting pluripotency. A previous study has identified hyperexpressed genes in cancer stem cells,among which is E2F2,a gene involved in malignant transformation and stem cell self-renewal. Here we tested whether E2F2 knockdown would affect the proliferative capacity and tumorigenicity of human embryonic stem cells (hESC). Transient E2F2 silencing in hESC significantly inhibited expression of the proto-oncogenes BMI1 and HMGA1,in addition to proliferation of hESC,indicated by a higher proportion of cells in G1,fewer cells in G2/M phase,and a reduced capacity to generate hESC colonies in vitro. Nonetheless,E2F2-silenced cells kept expression of typical pluripotency markers and displayed differentiation capacity in vitro. More importantly,E2F2 knockdown in hESC significantly inhibited tumor growth in vivo,which was considerably smaller than tumors generated from control hESC,although displaying typical teratoma traits,a major indicator of pluripotency retention in E2F2-silenced cells. These results suggest that E2F2 knockdown can inhibit hESC proliferation and tumorigenicity without significantly harming stemness,providing a rationale to future protocols aiming at minimizing risks related to therapeutic application of cells and/or products derived from human pluripotent cells.
View Publication
Meziane EK et al. (JUL 2011)
Journal of cell science 124 Pt 13 2175--86
Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells.
Fbxo7 is an unusual F-box protein because most of its interacting proteins are not substrates for ubiquitin-mediated degradation. Fbxo7 directly binds p27 and Cdk6,enhances the level of cyclin D-Cdk6 complexes,and its overexpression causes Cdk6-dependent transformation of immortalised fibroblasts. Here,we test the ability of Fbxo7 to transform haematopoietic pro-B (Ba/F3) cells which,unexpectedly,it was unable to do despite high levels of Cdk6. Instead,reduction of Fbxo7 expression increased proliferation,decreased cell size and shortened G1 phase. Analysis of cell cycle regulators showed that cells had decreased levels of p27,and increased levels of S phase cyclins and Cdk2 activity. Also,Fbxo7 protein levels correlated inversely with those of CD43,suggesting direct regulation of its expression and,therefore,of B cell maturation. Alterations to Cdk6 protein levels did not affect the cell cycle,indicating that Cdk6 is neither rate-limiting nor essential in Ba/F3 cells; however,decreased expression of Cdk6 also enhanced levels of CD43,indicating that expression of CD43 is independent of cell cycle regulation. The physiological effect of reduced levels of Fbxo7 was assessed by creating a transgenic mouse with a LacZ insertion into the Fbxo7 locus. Homozygous Fbxo7(LacZ) mice showed significantly increased pro-B cell and pro-erythroblast populations,consistent with Fbxo7 having an anti-proliferative function and/or a role in promoting maturation of precursor cells.
View Publication
Wu W et al. (JUL 2006)
Blood 108 1 141--51
KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo.
The cellular reservoir for Kaposi sarcoma-associated herpesvirus (KSHV) infection in the hematopoietic compartment and mechanisms governing latent infection and reactivation remain undefined. To determine susceptibility of human CD34+ hematopoietic progenitor cells (HPCs) to infection with KSHV,purified HPCs were exposed to KSHV,and cells were differentiated in vitro and in vivo. Clonogenic colony-forming activity was significantly suppressed in KSHV-infected CD34+ cells,and viral DNA was predominantly localized to granulocyte-macrophage colonies differentiated in vitro. rKSHV.219 is a recombinant KSHV construct that expresses green fluorescent protein from a cellular promoter active during latency and red fluorescent protein from a viral lytic promoter. Infection of CD34+ HPCs with rKSHV.219 showed similar patterns of infection,persistence,and hematopoietic suppression in vitro in comparison with KSHV. rKSHV.219 infection was detected in human CD14+ and CD19+ cells recovered from NOD/SCID mouse bone marrow and spleen following reconstitution with rKSHV.219-infected CD34+ HPCs. These results suggest that rKSHV.219 establishes persistent infection in NOD/SCID mice and that virus may be disseminated following differentiation of infected HPCs into the B-cell and monocyte lineages. CD34+ HPCs may be a reservoir for KSHV infection and may provide a continuous source of virally infected cells in vivo.
View Publication
Tsikritsis D et al. (MAY 2016)
Cytometry. Part A : the journal of the International Society for Analytical Cytology 1--23
Label-free biomarkers of human embryonic stem cell differentiation to hepatocytes.
Three different label-free,minimally invasive,live single cell analysis techniques were used to characterize embryonic stem cells,and the hepatocytes into which they were differentiated. Atomic Force Microscopy measures the cell's mechanical properties,Raman spectroscopy measures its chemical properties,and dielectrophoresis measures the membrane's capacitance. We were able to assign cell type of individual cells with accuracies of 96.5% (Atomic Force Microscopy),92.5 % (Raman spectroscopy),and *** % (Dielectrophoresis). These techniques,used either independently or in combination,offer label-free methods to study individual living cells. Although they can be applied to any phenotypical or environmental change,these techniques have most potential in human cell therapies where the use of biomarkers is best avoided. If all three properties are independent,then a combined accuracy of *** % can be achieved in cell characterization. We suggest how these methods could be combined into one microfluidic chip for cell sorting,and how they can be applied to cell culture.
View Publication
Konorov SO et al. (OCT 2013)
Analytical Chemistry 85 19 8996--9002
Label-Free Determination of the Cell Cycle Phase in Human Embryonic Stem Cells by Raman Microspectroscopy
The cell cycle is a series of integrated and coordinated physiological events that results in cell growth and replication. Besides observing the event of cell division it is not feasible to determine the cell cycle phase without fatal and/or perturbing invasive procedures such as cell staining,fixing,and/or dissociation. Raman microspectroscopy (RMS) is a chemical imaging technique that exploits molecular vibrations as a contrast mechanism; it can be applied to single living cells noninvasively to allow unperturbed analysis over time. We used RMS to determine the cell cycle phase based on integrating the composite 783 cm(-1) nucleic acid band intensities across individual cell nuclei. After correcting for RNA contributions using the RNA 811 cm(-1) band,the measured intensities essentially reflected DNA content. When quantifying Raman images from single cells in a population of methanol-fixed human embryonic stem cells,the histogram of corrected 783 cm(-1) band intensities exhibited a profile analogous to that obtained using flow-cytometry with nuclear stains. The two population peaks in the histogram occur at Raman intensities corresponding to a 1-fold and 2-fold diploid DNA complement per cell,consistent with a distribution of cells with a population peak due to cells at the end of G1 phase (1-fold) and a peak due to cells entering M phase (2-fold). When treated with EdU to label the replicating DNA and block cell division,cells with higher EdU-related fluorescence generally had higher integrated Raman intensities. This provides proof-of-principle of an analytical method for label-free RMS determination in situ of cell cycle phase in adherent monolayers or even single adherent cells.
View Publication
Myers FB et al. (JAN 2013)
Lab on a chip 13 2 220--8
Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte clusters.
Stem cell therapies hold great promise for repairing tissues damaged due to disease or injury. However,a major obstacle facing this field is the difficulty in identifying cells of a desired phenotype from the heterogeneous population that arises during stem cell differentiation. Conventional fluorescence flow cytometry and magnetic cell purification require exogenous labeling of cell surface markers which can interfere with the performance of the cells of interest. Here,we describe a non-genetic,label-free cell cytometry method based on electrophysiological response to stimulus. As many of the cell types relevant for regenerative medicine are electrically-excitable (e.g. cardiomyocytes,neurons,smooth muscle cells),this technology is well-suited for identifying cells from heterogeneous stem cell progeny without the risk and expense associated with molecular labeling or genetic modification. Our label-free cell cytometer is capable of distinguishing clusters of undifferentiated human induced pluripotent stem cells (iPSC) from iPSC-derived cardiomyocyte (iPSC-CM) clusters. The system utilizes a microfluidic device with integrated electrodes for both electrical stimulation and recording of extracellular field potential (FP) signals from suspended cells in flow. The unique electrode configuration provides excellent rejection of field stimulus artifact while enabling sensitive detection of FPs with a noise floor of 2 $$V(rms). Cells are self-aligned to the recording electrodes via hydrodynamic flow focusing. Based on automated analysis of these extracellular signals,the system distinguishes cardiomyocytes from non-cardiomyocytes. This is an entirely new approach to cell cytometry,in which a cell's functionality is assessed rather than its expression profile or physical characteristics.
View Publication
Awasthi S et al. (JAN 2012)
Journal of biophotonics 5 1 57--66
Label-free identification and characterization of human pluripotent stem cell-derived cardiomyocytes using second harmonic generation (SHG) microscopy
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are a potentially unlimited source of cardiomyocytes (CMs) for cardiac transplantation therapies. The establishment of pure PSC-CM populations is important for this application,but is hampered by a lack of CM-specific surface markers suitable for their identification and sorting. Contemporary purification techniques are either non-specific or require genetic modification. We report a second harmonic generation (SHG) signal detectable in PSC-CMs that is attributable to sarcomeric myosin,dependent on PSC-CM maturity,and retained while PSC-CMs are in suspension. Our study demonstrates the feasibility of developing a SHG-activated flow cytometer for the non-invasive purification of PSC-CMs.
View Publication
Schulze HG et al. (JUN 2013)
The Analyst 138 12 3416
Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy
The nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle,proliferation rate and stress. Changes in nucleolar size,number,chemical composition,and shape can be used to characterize malignant cells. We used spontaneous Raman microscopy as a label-free technique to examine nucleolar spatial and chemical features. Raman images of the 1003 cm(-1) phenylalanine band revealed large,well-defined subnuclear protein structures in MFC-7 breast cancer cells. The 783 cm(-1) images showed that nucleic acids were similarly distributed,but varied more in intensity,forming observable high-intensity regions. High subnuclear RNA concentrations were observed within some of these regions as shown by 809 cm(-1) Raman band images. Principal component analyses of sub-images and library spectra validated the subnuclear presence of RNA. They also revealed that an actin-like protein covaried with DNA within the nucleolus,a combination that accounted for 64% or more of the spectral variance. Embryonic stem cells are another rapidly proliferating cell type,but their nucleoli were not as large or well defined. Estimating the size of the larger MCF-7 nucleolus was used to show the utility of Raman microscopy for morphometric analyses. It was concluded that imaging based on Raman microscopy provides a promising new method for the study of nucleolar function and organization,in the evaluation of drug and experimental effects on the nucleolus,and in clinical diagnostics and prognostics.
View Publication
Sart S et al. ( 2015)
1283 43--52
Labeling pluripotent stem cell-derived neural progenitors with iron oxide particles for magnetic resonance imaging.
Due to the unlimited proliferation capacity and the unique differentiation ability of pluripotent stem cells (PSCs),including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs),large numbers of PSC-derived cell products are in demand for applications in drug screening,disease modeling,and especially cell therapy. In stem cell-based therapy,tracking transplanted cells with magnetic resonance imaging (MRI) has emerged as a powerful technique to reveal cell survival and distribution. This chapter illustrated the basic steps of labeling PSC-derived neural progenitors (NPs) with micron-sized particles of iron oxide (MPIO,0.86 $$m) for MRI analysis. The protocol described PSC expansion and differentiation into NPs,and the labeling of the derived cells either after replating on adherent surface or in suspension. The labeled cells can be analyzed using in vitro MRI analysis. The methods presented here can be easily adapted for cell labeling in cell processing facilities under current Good Manufacturing Practices (cGMP). The iron oxide-labeled NPs can be used for cellular monitoring of in vitro cultures and in vivo transplantation.
View Publication