Long T et al. (MAR 2014)
Biomaterials 35 9 2752--9
The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice.
Structural bone allografts are widely used in the clinic to treat critical sized bone defects,despite lacking the osteoinductive characteristics of live autografts. To address this,we generated revitalized structural allografts wrapped with mesenchymal stem/progenitor cell (MSC) sheets,which were produced by expanding primary syngenic bone marrow derived cells on temperature-responsive plates,as a tissue-engineered periosteum. In vitro assays demonstrated maintenance of the MSC phenotype in the sheets,suggesting that short-term culturing of MSC sheets is not detrimental. To test their efficacy in vivo,allografts wrapped with MSC sheets were transplanted into 4-mm murine femoral defects and compared to allografts with direct seeding of MSCs and allografts without cells. Evaluations consisted of X-ray plain radiography,3D microCT,histology,and biomechanical testing at 4- and 6-weeks post-surgery. Our findings demonstrate that MSC sheets induce prolonged cartilage formation at the graft-host junction and enhanced bone callus formation,as well as graft-host osteointegration. Moreover,a large periosteal callus was observed spanning the allografts with MSC sheets,which partially mimics live autograft healing. Finally,biomechanical testing showed a significant increase in the structural and functional properties of MSC sheet grafted femurs. Taken together,MSC sheets exhibit enhanced osteogenicity during critical sized bone defect repair,demonstrating the feasibility of this tissue engineering solution for massive allograft healing.
View Publication
Vazin T et al. (JAN 2014)
Biomaterials 35 3 941--948
The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons
Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions,where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh),whose posttranslational lipid modifications and assembly into multimers enhance its biological potency,potentially through receptor clustering. Investigations of Shh typically utilize recombinant,monomeric protein,and thus the impact of multivalency on ligand potency is unexplored. Among its many activities,Shh is required for ventralization of the midbrain and forebrain and is therefore critical for the development of midbrain dopaminergic (mDA) and forebrain gamma-aminobutyric acid (GABA) inhibitory neurons. We have designed multivalent biomaterials presenting Shh in defined spatial arrangements and investigated the role of Shh valency in ventral specification of human embryonic stem cells (hESCs) into these therapeutically relevant cell types. Multivalent Shh conjugates with optimal valencies,compared to the monomeric Shh,increased the percentages of neurons belonging to mDA or forebrain GABAergic fates from 33% to 60% or 52% to 86%,respectively. Thus,multivalent Shh bioconjugates can enhance neuronal lineage commitment of pluripotent stem cells and thereby facilitate efficient derivation of neurons that could be used to treat Parkinson's and epilepsy patients.
View Publication
Maldonado M et al. (MAY 2015)
Biomaterials 50 1 10--19
The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells
The development of xeno-free,chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard,various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal,i.e.,proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly,when surface chemistry of the substrates was uniformly controlled by collagen conjugation,the stiffness of substrate was inversely related to the sphericity,a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture,implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall,we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal.
View Publication
Yan H-J et al. (JAN 2016)
Experimental Cell Research 340 2 227--237
The effects of LSD1 inhibition on self-renewal and differentiation of human induced pluripotent stem cells
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited self-renewal and can generate nearly all cells in the body. Changes induced by different LSD1 activities on the regulation of hiPSC self-renewal and differentiation and the mechanism underlying such changes were determined. We used two different LSD1 inhibitors (phenelzine sulfate and tranylcypromine) and RNAi technique to inhibit LSD1 activity,and we obtained hiPSCs showing 71.3%,53.28%,and 31.33% of the LSD1 activity in normal hiPSCs. The cells still maintained satisfactory self-renewal capacity when LSD1 activity was at 71.3%. The growth rate of hiPSCs decreased and cells differentiated when LSD1 activity was at approximately 53.28%. The hiPSCs were mainly arrested in the G0/G1 phase and simultaneously differentiated into endodermal tissue when LSD1 activity was at 31.33%. Teratoma experiments showed that the downregulation of LSD1 resulted in low teratoma volume. When LSD1 activity was below 50%,pluripotency of hiPSCs was impaired,and the teratomas mainly comprised endodermal and mesodermal tissues. This phenomenon was achieved by regulating the critical balance between histone methylation and demethylation at regulatory regions of several key pluripotent and developmental genes.
View Publication
Sebaa M et al. (JAN 2015)
Journal of Biomedical Materials Research - Part A 103 1 25--37
The effects of poly(3,4-ethylenedioxythiophene) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications
Magnesium (Mg) is a promising conductive metallic biomaterial due to its desirable mechanical properties for load bearing and biodegradability in human body. Controlling the rapid degradation of Mg in physiological environment continues to be the key challenge toward clinical translation. In this study,we investigated the effects of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the degradation behavior of Mg substrates and their cytocompatibility. Human embryonic stem cells (hESCs) were used as the in vitro model system to study cellular responses to Mg degradation because they are sensitive and can potentially differentiate into many cell types of interest (e.g.,neurons) for regenerative medicine. The PEDOT was deposited on Mg substrates using electrochemical deposition. The greater number of cyclic voltammetry (CV) cycles yielded thicker PEDOT coatings on Mg substrates. Specifically,the coatings produced by 2,5,and 10 CV cycles (denoted as 2×-PEDOT-Mg,5×-PEDOT-Mg,and 10×-PEDOT-Mg) had an average thickness of 31,63,and 78 µm,respectively. Compared with non-coated Mg samples,all PEDOT coated Mg samples showed slower degradation rates,as indicated by Tafel test results and Mg ion concentrations in the post-culture media. The 5×-PEDOT-Mg showed the best coating adhesion and slowest Mg degradation among the tested samples. Moreover,hESCs survived for the longest period when cultured with the 5×-PEDOT-Mg samples compared with the non-coated Mg and 2×-PEDOT-Mg. Overall,the results of this study showed promise in using PEDOT coating on biodegradable Mg-based implants for potential neural recording,stimulation and tissue engineering applications,thus encouraging further research.
View Publication
Goossens S et al. (MAY 2011)
Blood 117 21 5620--30
The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization.
Zeb2 (Sip1/Zfhx1b) is a member of the zinc-finger E-box-binding (ZEB) family of transcriptional repressors previously demonstrated to regulate epithelial-to-mesenchymal transition (EMT) processes during embryogenesis and tumor progression. We found high Zeb2 mRNA expression levels in HSCs and hematopoietic progenitor cells (HPCs),and examined Zeb2 function in hematopoiesis through a conditional deletion approach using the Tie2-Cre and Vav-iCre recombination mouse lines. Detailed cellular analysis demonstrated that Zeb2 is dispensable for hematopoietic cluster and HSC formation in the aorta-gonadomesonephros region of the embryo,but is essential for normal HSC/HPC differentiation. In addition,Zeb2-deficient HSCs/HPCs fail to properly colonize the fetal liver and/or bone marrow and show enhanced adhesive properties associated with increased β1 integrin and Cxcr4 expression. Moreover,deletion of Zeb2 resulted in embryonic (Tie2-Cre) and perinatal (Vav-icre) lethality due to severe cephalic hemorrhaging and decreased levels of angiopoietin-1 and,subsequently,improper pericyte coverage of the cephalic vasculature. These results reveal essential roles for Zeb2 in embryonic hematopoiesis and are suggestive of a role for Zeb2 in hematopoietic-related pathologies in the adult.
View Publication
Yokota T et al. (MAR 2009)
Blood 113 13 2914--23
The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice.
Although recent advances have enabled hematopoietic stem cells (HSCs) to be enriched to near purity,more information about their characteristics will improve our understanding of their development and stage-related functions. Here,using microarray technology,we identified endothelial cell-selective adhesion molecule (ESAM) as a novel marker for murine HSCs in fetal liver. Esam was expressed at high levels within a Rag1(-) c-kit(Hi) Sca1(+) HSC-enriched fraction,but sharply down-regulated with activation of the Rag1 locus,a valid marker for the most primitive lymphoid progenitors in E14.5 liver. The HSC-enriched fraction could be subdivided into 2 on the basis of ESAM levels. Among endothelial antigens on hematopoietic progenitors,ESAM expression showed intimate correlation with HSC activity. The ESAM(Hi) population was highly enriched for multipotent myeloid-erythroid progenitors and primitive progenitors with lymphopoietic activity,and exclusively reconstituted long-term lymphohematopoiesis in lethally irradiated recipients. Tie2(+) c-kit(+) lymphohematopoietic cells in the E9.5-10.5 aorta-gonad-mesonephros region also expressed high levels of ESAM. Furthermore,ESAM was detected on primitive hematopoietic progenitors in adult bone marrow. Interestingly,ESAM expression in the HSC-enriched fraction was up-regulated in aged mice. We conclude that ESAM marks HSC in murine fetal liver and will facilitate studies of hematopoiesis throughout life.
View Publication
Sussman RT et al. (AUG 2013)
Journal of Biological Chemistry 288 33 24234--24246
The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2)
Pluripotent embryonic stem cells (ESCs) undergo self-renewal until stimulated to differentiate along specific lineage pathways. Many of the transcriptional networks that drive reprogramming of a self-renewing ESC to a differentiating cell have been identified. However,fundamental questions remain unanswered about the epigenetic programs that control these changes in gene expression. Here we report that the histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is a critical epigenetic modifier that controls this transition from self-renewal to differentiation. USP22 is induced as ESCs differentiate and is necessary for differentiation into all three germ layers. We further report that USP22 is a transcriptional repressor of the locus encoding the core pluripotency factor sex-determining region Y-box 2 (SOX2) in ESCs,and this repression is required for efficient differentiation. USP22 occupies the Sox2 promoter and hydrolyzes monoubiquitin from ubiquitylated histone H2B and blocks transcription of the Sox2 locus. Our study reveals an epigenetic mechanism that represses the core pluripotency transcriptional network in ESCs,allowing ESCs to transition from a state of self-renewal into lineage-specific differentiation programs.
View Publication
Dahl C et al. (APR 2002)
Journal of immunological methods 262 1-2 137--43
The establishment of a combined serum-free and serum-supplemented culture method of obtaining functional cord blood-derived human mast cells.
BACKGROUND: Serum-free cultures supplemented with stem cell factor (SCF) and IL-6 is reported to support the extensive growth of less functional human cord blood-derived mast cells. OBJECTIVE: To obtain more functional mast cells from cord blood,we developed a culture system combining a serum-free condition for 0-8 weeks of culture,and followed by a serum-supplemented culture condition and examined the function of the cells compared to the cells cultured continuously in serum-free condition. METHODS: Human cord blood progenitors were purified with anti-CD133 antibody. They were cultured in a serum-free medium StemSpan supplemented with SCF at 100 ng/ml and IL-6 at 50 ng/ml for 8 weeks. Then,an aliquot of the cultured cells were cultured in the above condition but further supplemented with 10% fetal calf serum (FCS). RESULTS: The addition of FCS after 8 weeks of culture significantly increased the amount of histamine per mast cell (3.8 pg/cell) when compared to the serum-free condition (0.7 pg/cell). The cells cultured with FCS after 8 weeks expressed more FcvarepsilonRI alpha and released textgreater30% of the histamine content upon anti-IgE stimulation than those cultured without serum. CONCLUSION: It is uncertain why FCS enhanced the functional maturation of mast cells when added after week 8 of culture but suppressed mast cell development when added at day 0 of culture. Yet,the present method combining a serum-free culture system with a serum-supplemented culture system seems to be beneficial for most of the laboratories to obtain functional human mast cells.
View Publication
Carella C et al. (FEB 2006)
Blood 107 3 1124--32
The ETS factor TEL2 is a hematopoietic oncoprotein.
TEL2/ETV7 is highly homologous to the ETS transcription factor TEL/ETV6,a frequent target of chromosome translocation in human leukemia. Although both proteins are transcriptional inhibitors binding similar DNA recognition sequences,they have opposite biologic effects: TEL inhibits proliferation while TEL2 promotes it. In addition,forced expression of TEL2 but not TEL blocks vitamin D3-induced differentiation of U937 and HL60 myeloid cells. TEL2 is expressed in the hematopoietic system,and its expression is up-regulated in bone marrow samples of some patients with leukemia,suggesting a role in oncogenesis. Recently we also showed that TEL2 cooperates with Myc in B lymphomagenesis in mice. Here we show that forced expression of TEL2 alone in mouse bone marrow causes a myeloproliferative disease with a long latency period but with high penetrance. This suggested that secondary mutations are necessary for disease development. Treating mice receiving transplants with TEL2-expressing bone marrow with the chemical carcinogen N-ethyl-N-nitrosourea (ENU) resulted in significantly accelerated disease onset. Although the mice developed a GFP-positive myeloid disease with 30% of the mice showing elevated white blood counts,they all died of T-cell lymphoma,which was GFP negative. Together our data identify TEL2 as a bona fide oncogene,but leukemic transformation is dependent on secondary mutations.
View Publication
Kwok CTD et al. (MAR 2016)
Stem Cell Research 16 3 651--661
The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells
Human embryonic stem cells (hESCs) exhibit unique cell cycle structure,self-renewal and pluripotency. The Forkhead box transcription factor M1 (FOXM1) is critically required for the maintenance of pluripotency in mouse embryonic stem cells and mouse embryonal carcinoma cells,but its role in hESCs remains unclear. Here,we show that FOXM1 expression was enriched in undifferentiated hESCs and was regulated in a cell cycle-dependent manner with peak levels detected at the G2/M phase. Expression of FOXM1 did not correlate with OCT4 and NANOG during in vitro differentiation of hESCs. Importantly,knockdown of FOXM1 expression led to aberrant cell cycle distribution with impairment in mitotic progression but showed no profound effect on the undifferentiated state. Interestingly,FOXM1 depletion sensitized hESCs to oxidative stress. Moreover,genome-wide analysis of FOXM1 targets by ChIP-seq identified genes important for M phase including CCNB1 and CDK1,which were subsequently confirmed by ChIP and RNA interference analyses. Further peak set comparison against a differentiating hESC line and a cancer cell line revealed a substantial difference in the genomic binding profile of FOXM1 in hESCs. Taken together,our findings provide the first evidence to support FOXM1 as an important regulator of cell cycle progression and defense against oxidative stress in hESCs.
View Publication
Nakamura S et al. (NOV 2010)
Carcinogenesis 31 11 2012--21
The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia.
FOXM1 is an important cell cycle regulator and regulates cell proliferation. In addition,FOXM1 has been reported to contribute to oncogenesis in various cancers. However,it is not clearly understood how FOXM1 contributes to acute myeloid leukemia (AML) cell proliferation. In this study,we investigated the cellular and molecular function of FOXM1 in AML cells. The FOXM1 messenger RNA (mRNA) expressed in AML cell lines was predominantly the FOXM1B isoform,and its levels were significantly higher than in normal high aldehyde dehydrogenase activity (ALDH(hi)) cells. Reduction of FOXM1 expression in AML cells inhibited cell proliferation compared with control cells,through induction of G(2)/M cell cycle arrest,a decrease in the protein expression of Aurora kinase B,Survivin,Cyclin B1,S-phase kinase-associated protein 2 and Cdc25B and an increase in the protein expression of p21(Cip1) and p27(Kip1). FOXM1 messenger RNA (mRNA) was overexpressed in all 127 AML clinical specimens tested (n = 21,56,32 and 18 for M1,M2,M4 and M5 subtypes,respectively). Compared with normal ALDH(hi) cells,FOXM1 gene expression was 1.65- to 2.26-fold higher in AML cells. Moreover,the FOXM1 protein was more strongly expressed in AML-derived ALDH(hi) cells compared with normal ALDH(hi) cells. In addition,depletion of FOXM1 reduced colony formation of AML-derived ALDH(hi) cells due to inhibition of Cdc25B and Cyclin B1 expression. In summary,we found that FOXM1B mRNA is predominantly expressed in AML cells and that aberrant expression of FOXM1 induces AML cell proliferation through modulation of cell cycle progression. Thus,inhibition of FOXM1 expression represents an attractive target for AML therapy.
View Publication