Hartmann I et al. (DEC 2010)
Journal of immunological methods 363 1 80--9
Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties.
Mesenchymal stem cells (MSCs) are fibroblast-like multipotent stem cells that can differentiate into cell types of mesenchymal origin. Because of their immune properties and differentiation,potential MSCs are discussed for the use in tissue regeneration and tolerance induction in transplant medicine. This cell type can easily be obtained from the umbilical cord tissue (UCMSC) without medical intervention. Standard culture conditions include fetal bovine serum (FBS) which may not be approved for clinical settings. Here,we analyzed the phenotypic and functional properties of UCMSC under xeno-free (XF,containing GMP-certified human serum) and serum-free (SF) culture conditions in comparison with standard UCMSC cultures. Phenotypically,UCMSC showed no differences in the expression of mesenchymal markers or differentiation capacity. Functionally,XF and SF-cultured UCMSC have comparable adipogenic,osteogenic,and endothelial differentiation potential. Interestingly,the UCMSC-mediated suppression of T cell proliferation in an allogeneic mixed lymphocyte reaction (MLR) is more effective in XF and SF media than in standard FBS-containing cultures. Regarding the mechanism of action of MLR suppression,transwell experiments revealed that in neither UCMSC culture a direct cell-cell contact is necessary for inhibiting T cell proliferation,and that the major effector molecule is prostaglandin E₂ (PGE₂). Taken together,GMP-compliant growth media qualify for long-term cultures of UCMSC which is important for a future clinical study design in regenerative and transplant medicine.
View Publication
Cutler AJ et al. (DEC 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 11 6617--23
Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation.
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues,with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However,the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper,we report that suppression of mitogen-induced T cell proliferation by human UC-,bone marrow-,and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation,indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays,an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore,we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation.
View Publication
Feng Y et al. (SEP 2010)
Progress in biophysics and molecular biology 103 1 148--56
Unique biomechanical interactions between myeloma cells and bone marrow stroma cells.
We observed that BMSCs (bone marrow stromal cells) from myeloma patients (myeloma BMSCs) were significantly stiffer than control BMSCs using a cytocompression device. The stiffness of myeloma BMSCs and control BMSCs was further increased upon priming by myeloma cells. Additionally,myeloma cells became stiffer when primed by myeloma BMSCs. The focal adhesion kinase activity of myeloma cells was increased when cells were on stiffer collagen gels and on myeloma BMSCs. This change in myeloma stiffness is associated with increased colony formation of myeloma cells and FAK activation when co-cultured with stiffer myeloma BMSCs or stiffer collagen. Additionally,stem cells of RPMI8226 cells became stiffer after priming by myeloma BMSCs,with concomitant increases of stem cell colony formation. These results suggest the presence of a mechanotransduction loop between myeloma cells and myeloma BMSCs to increase the stiffness of both types of cells via FAK activation. The increase of stiffness may in turn support the growth of myeloma cells and myeloma stem cells.
View Publication
Sokolov MV et al. (JAN 2012)
PLoS ONE 7 2 e31028
Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells
MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However,the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here,by using system biology approaches,we show for the first time,that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes),and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-,cell cycle-,ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response,and identify novel molecular targets of radiation in hESC.
View Publication
Moulding DA et al. (SEP 2007)
The Journal of experimental medicine 204 9 2213--24
Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia.
Specific mutations in the human gene encoding the Wiskott-Aldrich syndrome protein (WASp) that compromise normal auto-inhibition of WASp result in unregulated activation of the actin-related protein 2/3 complex and increased actin polymerizing activity. These activating mutations are associated with an X-linked form of neutropenia with an intrinsic failure of myelopoiesis and an increase in the incidence of cytogenetic abnormalities. To study the underlying mechanisms,active mutant WASp(I294T) was expressed by gene transfer. This caused enhanced and delocalized actin polymerization throughout the cell,decreased proliferation,and increased apoptosis. Cells became binucleated,suggesting a failure of cytokinesis,and micronuclei were formed,indicative of genomic instability. Live cell imaging demonstrated a delay in mitosis from prometaphase to anaphase and confirmed that multinucleation was a result of aborted cytokinesis. During mitosis,filamentous actin was abnormally localized around the spindle and chromosomes throughout their alignment and separation,and it accumulated within the cleavage furrow around the spindle midzone. These findings reveal a novel mechanism for inhibition of myelopoiesis through defective mitosis and cytokinesis due to hyperactivation and mislocalization of actin polymerization.
View Publication
Son MY et al. (NOV 2013)
Stem Cells 31 11 2374--2387
Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency
Reduced expression 1 (REX1) is a widely used pluripotency marker,but little is known about its roles in pluripotency. Here,we show that REX1 is functionally important in the reacquisition and maintenance of pluripotency. REX1-depleted human pluripotent stem cells (hPSCs) lose their self-renewal capacity and full differentiation potential,especially their mesoderm lineage potential. Cyclin B1/B2 expression was found to parallel that of REX1. REX1 positively regulates the transcriptional activity of cyclin B1/B2 through binding to their promoters. REX1 induces the phosphorylation of DRP1 at Ser616 by cyclin B/CDK1,which leads to mitochondrial fission and appears to be important for meeting the high-energy demands of highly glycolytic hPSCs. During reprogramming to pluripotency by defined factors (OCT4,SOX2,KLF4,and c-MYC),the reprogramming kinetics and efficiency are markedly improved by adding REX1 or replacing KLF4 with REX1. These improvements are achieved by lowering reprogramming barriers (growth arrest and apoptosis),by enhancing mitochondrial fission,and by conversion to glycolytic metabolism,dependent on the cyclin B1/B2-DRP1 pathway. Our results show that a novel pluripotency regulator,REX1,is essential for pluripotency and reprogramming.
View Publication
Singh H et al. (MAY 2010)
Stem Cell Research 4 3 165--179
Up-scaling single cell-inoculated suspension culture of human embryonic stem cells.
We have systematically developed single cell-inoculated suspension cultures of human embryonic stem cells (hESC) in defined media. Cell survival was dependent on hESC re-aggregation. In the presence of the Rho kinase inhibitor Y-27632 (Ri) only ∼ 44% of the seeded cells were rescued,but an optimized heat shock treatment combined with Ri significantly increased cell survival to ∼ 60%. Mechanistically,our data suggest that E-cadherin plays a role in hESC aggregation and that dissociation and re-aggregation upon passaging functions as a purification step towards a pluripotency markers-enriched population. Mass expansion of hESC was readily achieved by up-scaling 2 ml cultures to serial passaging in 50 ml spinner flasks. A media comparison revealed that mTeSR was superior to KnockOut-SR in supporting cell proliferation and pluripotency. Persistent expression of pluripotency markers was achieved for two lines (hES2,hES3) that were used at higher passages (textgreater 86). In contrast,rapid down regulation of Oct4,Tra-1-60,and SSEA4 was observed for ESI049,a clinically compliant line,used at passages 20-36. The up-scaling strategy has significant potential to provide pluripotent cells on a clinical scale. Nevertheless,our data also highlights a significant line-to-line variability and the need for a critical assessment of novel methods with numerous relevant cell lines. textcopyright 2010 Elsevier B.V. All rights reserved.
View Publication
Guan X et al. (JUL 2015)
Human gene therapy. Clinical development 150715074418003
Use of adeno-associated virus to enrich cardiomyocytes derived from human stem cells.
Cardiomyocytes derived from human induced pluripotent stem cells (iPSC) show great promise as autologous donor cells to treat heart disease. A major technical obstacle to this approach is that available induction methods often produce heterogeneous cell population with low percentage of cardiomyocytes. Here we describe a cardiac enrichment approach using non-integrating adeno-associated virus (AAV). We first examined several AAV serotypes for their ability to selectively transduce iPSC-derived cardiomyocytes. Result showed that AAV1 demonstrated the highest in vitro transduction efficiency among seven widely used serotypes. Next differentiated iPSC derivatives were transduced with drug-selectable AAV1 expressing neomycin resistance gene. Selection with G418 enriched the cardiac cell fraction from 27% to 57% in two weeks. Compared to other enrichment strategies such as integrative genetic selection,mitochondria labeling or surface marker cell sorting,this simple AAV method described herein bypasses antibody or dye labeling. These findings provide proof-of-concept for large-scale cardiomyocyte enrichment by exploiting AAV's intrinsic tissue tropism.
View Publication
Guo M et al. (MAY 2017)
Cell reports 19 8 1512--1521
Using hESCs to Probe the Interaction of the Diabetes-Associated Genes CDKAL1 and MT1E.
Genome-wide association studies (GWASs) have identified many disease-associated variant alleles,but understanding whether and how different genes/loci interact requires a platform for probing how the variant alleles act mechanistically. Isogenic mutant human embryonic stem cells (hESCs) provide an unlimited resource to derive and study human disease-relevant cells. Here,we focused on CDKAL1,linked by GWASs to diabetes. Through transcript profiling,we find that expression of the metallothionein (MT) gene family,also linked by GWASs to diabetes,is significantly downregulated in CDKAL1(-/-) cells that have been differentiated to insulin-expressing pancreatic beta-like cells. Forced MT1E expression rescues both hypersensitivity of CDKAL1 mutant cells to glycolipotoxicity and pancreatic beta-cell dysfunction in vitro and in vivo. MT1E functions at least in part through relief of ER stress. This study establishes an isogenic hESC-based platform to study the interaction of GWAS-identified diabetes gene variants and illuminate the molecular network impacting disease progression.
View Publication
Verheyen A et al. (DEC 2015)
PLoS ONE 10 12 e0146127
Using human iPSC-derived neurons to model TAU aggregation
Alzheimer's disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening,we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons,seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks,without affecting general cell health. To validate our model,activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model,highly suitable to screen for compounds that modulate TAU aggregation.
View Publication
Tucker BA et al. (DEC 2015)
Translational Research 166 6 740--749.e1
Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial
Retinal pigment epithelium-specific 65 kDa (RPE65)-associated Leber congenital amaurosis is an autosomal recessive disease that results in reduced visual acuity and night blindness beginning at birth. It is one of the few retinal degenerative disorders for which promising clinical gene transfer trials are currently underway. However,the ability to enroll patients in a gene augmentation trial is dependent on the identification of 2 bona fide disease-causing mutations,and there are some patients with the phenotype of RPE65-associated disease who might benefit from gene transfer but are ineligible because 2 disease-causing genetic variations have not yet been identified. Some such patients have novel mutations in RPE65 for which pathogenicity is difficult to confirm. The goal of this study was to determine if an intronic mutation identified in a 2-year-old patient with presumed RPE65-associated disease was truly pathogenic and grounds for inclusion in a clinical gene augmentation trial. Sequencing of the RPE65 gene revealed 2 mutations: (1) a previously identified disease-causing exonic leucine-to-proline mutation (L408P) and (2) a novel single point mutation in intron 3 (IVS3-11) resulting in an AtextgreaterG change. RT-PCR analysis using RNA extracted from control human donor eye-derived primary RPE,control iPSC-RPE cells,and proband iPSC-RPE cells revealed that the identified IVS3-11 variation caused a splicing defect that resulted in a frameshift and insertion of a premature stop codon. In this study,we demonstrate how patient-specific iPSCs can be used to confirm pathogenicity of unknown mutations,which can enable positive clinical outcomes.
View Publication
Mellick AS et al. (SEP 2010)
Cancer research 70 18 7273--82
Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumor angiogenesis and growth.
Tumor angiogenesis is essential for malignant growth and metastasis. Bone marrow (BM)-derived endothelial progenitor cells (EPC) contribute to angiogenesis-mediated tumor growth. EPC ablation can reduce tumor growth; however,the lack of a marker that can track EPCs from the BM to tumor neovasculature has impeded progress in understanding the molecular mechanisms underlying EPC biology. Here,we report the use of transgenic mouse and lentiviral models to monitor the BM-derived compartment of the tumor stroma; this approach exploits the selectivity of the transcription factor inhibitor of DNA binding 1 (Id1) for EPCs to track EPCs in the BM,blood,and tumor stroma,as well as mature EPCs. Acute ablation of BM-derived EPCs using Id1-directed delivery of a suicide gene reduced circulating EPCs and yielded significant defects in angiogenesis-mediated tumor growth. Additionally,use of the Id1 proximal promoter to express microRNA-30-based short hairpin RNA inhibited the expression of critical EPC-intrinsic factors,confirming that signaling through vascular endothelial growth factor receptor 2 is required for EPC-mediated tumor biology. By exploiting the selectivity of Id1 gene expression in EPCs,our results establish a strategy to track and target EPCs in vivo,clarifying the significant role that EPCs play in BM-mediated tumor angiogenesis.
View Publication