Characterization and evaluation of human embryonic stem cells.
Human embryonic stem cells (hESCs) provide great opportunities for regenerative medicine,pharmacological and toxicological investigation,and the study of human embryonic development. These applications require proper derivation,maintenance,and extensive characterization of undifferentiated cells before being used for differentiation into cells of interest. Undifferentiated hESCs possess several unique features,including their extensive proliferation capacity in the undifferentiated state,ability to maintain a normal karyotype after long-term culture,expression of markers characteristic of stem cells,high constitutive telomerase activity,and capacity to differentiate into essentially all somatic cell types. This chapter will summarize the current development in culture conditions and provide technical details for the evaluation and characterization of hESCs.
View Publication
Madissoon E et al. (JUL 2016)
Scientific reports 6 28995
Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos.
PAIRED (PRD)-like homeobox genes belong to a class of predicted transcription factor genes. Several of these PRD-like homeobox genes have been predicted in silico from genomic sequence but until recently had no evidence of transcript expression. We found recently that nine PRD-like homeobox genes,ARGFX,CPHX1,CPHX2,DPRX,DUXA,DUXB,NOBOX,TPRX1 and TPRX2,were expressed in human preimplantation embryos. In the current study we characterized these PRD-like homeobox genes in depth and studied their functions as transcription factors. We cloned multiple transcript variants from human embryos and showed that the expression of these genes is specific to embryos and pluripotent stem cells. Overexpression of the genes in human embryonic stem cells confirmed their roles as transcription factors as either activators (CPHX1,CPHX2,ARGFX) or repressors (DPRX,DUXA,TPRX2) with distinct targets that could be explained by the amino acid sequence in homeodomain. Some PRD-like homeodomain transcription factors had high concordance of target genes and showed enrichment for both developmentally important gene sets and a 36 bp DNA recognition motif implicated in Embryo Genome Activation (EGA). Our data implicate a role for these previously uncharacterized PRD-like homeodomain proteins in the regulation of human embryo genome activation and preimplantation embryo development.
View Publication
Li W et al. (OCT 2016)
Molecular psychiatry
Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells.
The enteric nervous system (ENS) is recognized as a second brain because of its complexity and its largely autonomic control of bowel function. Recent progress in studying the interactions between the ENS and the central nervous system (CNS) has implicated alterations of the gut/brain axis as a possible mechanism in the pathophysiology of autism spectrum disorders (ASDs),Parkinson's disease (PD) and other human CNS disorders,whereas the underlying mechanisms are largely unknown because of the lack of good model systems. Human induced pluripotent stem cells (hiPSCs) have the ability to proliferate indefinitely and differentiate into cells of all three germ layers,thus making iPSCs an ideal source of cells for disease modelling and cell therapy. Here,hiPSCs were induced to differentiate into neural crest stem cells (NCSCs) efficiently. When co-cultured with smooth muscle layers of ganglionic gut tissue,the NCSCs differentiated into different subtypes of mature enteric-like neurons expressing nitric oxide synthase (nNOS),vasoactive intestinal polypeptide (VIP),choline acetyltransferase (ChAT) or calretinin with typical electrophysiological characteristics of functional neurons. Furthermore,when they were transplanted into aneural or aganglionic chick,mouse or human gut tissues in ovo,in vitro or in vivo,hiPSC-derived NCSCs showed extensive migration and neural differentiation capacity,generating neurons and glial cells that expressed phenotypic markers characteristic of the enteric nervous system. Our results indicate that enteric NCSCs derived from hiPSCs supply a powerful tool for studying the pathogenesis of gastrointestinal disorders and brain/gut dysfunction and represent a potentially ideal cell source for enteric neural transplantation treatments.Molecular Psychiatry advance online publication,25 October 2016; doi:10.1038/mp.2016.191.
View Publication
Madison JM et al. (JUN 2015)
Molecular Psychiatry 20 November 2013 703--17
Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities.
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD,little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD,we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially,no significant phenotypic differences were observed between iPSCs derived from the different family members. However,upon directed neural differentiation,we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity,including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3,a known regulator of WNT signaling,was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together,these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
View Publication
Stingl J et al. (MAY 2001)
Breast cancer research and treatment 67 2 93--109
Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.
The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted,myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM),alpha6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18,keratin 19,EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of alpha6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.
View Publication
Mateizel I et al. (OCT 2009)
Human reproduction (Oxford,England) 24 10 2477--89
Characterization of CD30 expression in human embryonic stem cell lines cultured in serum-free media and passaged mechanically
BACKGROUND: The presence of chromosomal abnormalities could have a negative impact for human embryonic stem cell (hESC) applications both in regenerative medicine and in research. A biomarker that allows the identification of chromosomal abnormalities induced in hESC in culture before they take over the culture would represent an important tool for defining optimal culture conditions for hESC. Here we investigate the expression of CD30,reported to be a biomarker of hESCs with abnormal karyotype,in undifferentiated and spontaneously differentiated hESC.backslashnbackslashnMETHODS AND RESULTS: hESC were derived and cultured on mouse fibroblasts in KO-SR containing medium (serum free media) and passaged mechanically. Our results based on analysis at mRNA (RT-PCR) and protein (fluorescence-activated cell sorting and immunocytochemistry) level show that CD30 is expressed in undifferentiated hESC,even at very early passages,without any correlation with the presence of chromosomal anomalies. We also show that the expression of CD30 is rapidly lost during early spontaneous differentiation of hESC.backslashnbackslashnCONCLUSION: We conclude that CD30 expression in hESC cultures is probably a consequence of culture conditions,and that KO-SR may play a role. In addition,the expression of so-called 'stemness' markers does not change in undifferentiated hESC during long-term culture or when cells acquire chromosomal abnormalities.
View Publication
Carvalho JL et al. (NOV 2012)
Journal of tissue science & engineering Suppl 11 002
Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells.
Tissue engineering strategies,based on solid/porous scaffolds,suffer from several limitations,such as ineffective vascularization,poor cell distribution and organization within scaffold,in addition to low final cell density,among others. Therefore,the search for other tissue engineering approaches constitutes an active area of investigation. Decellularized matrices (DM) present major advantages compared to solid scaffolds,such as ideal chemical composition,the preservation of vascularization structure and perfect three-dimensional structure. In the present study,we aimed to characterize and investigate murine heart decellularized matrices as biomaterials for regular and whole organ tissue engineering. Heart decellularized matrices were characterized according to: 1. DNA content,through DNA quantificationo and PCR of isolated genomic DNA; 2. Histological structure,assessed after Hematoxylin and Eosin,as well as Masson's Trichrome stainings; 3. Surface nanostructure analysis,performed,using SEM. Those essays allowed us to conclude that DM was indeed decellularized,with preserved extracellular matrix structure. Following characterization,decellularized heart slices were seeded with induced Pluripotent Stem cells (iPS). As expected,but - to the best of our knowledge - never shown before,decellularization of murine heart matrices maintained matrix biocompatibility,as iPS cells rapidly attached to the surface of the material and proliferated. Strikingly though,heart DM presented a differentiation induction effect over those cells,which lost their pluripotency markers after 7 days of culture in the DM. Such loss of differentiation markers was observed,even though bFGF containing media mTSR was used during such period. Gene expression of iPS cells cultured on DM will be further analyzed,in order to assess the effects of culturing pluripotent stem cells in decellularized heart matrices.
View Publication
Seno A et al. ( 2016)
Cancer informatics 15 163--178
Characterization of Gene Expression Patterns among Artificially Developed Cancer Stem Cells Using Spherical Self-Organizing Map.
We performed gene expression microarray analysis coupled with spherical self-organizing map (sSOM) for artificially developed cancer stem cells (CSCs). The CSCs were developed from human induced pluripotent stem cells (hiPSCs) with the conditioned media of cancer cell lines,whereas the CSCs were induced from primary cell culture of human cancer tissues with defined factors (OCT3/4,SOX2,and KLF4). These cells commonly expressed human embryonic stem cell (hESC)/hiPSC-specific genes (POU5F1,SOX2,NANOG,LIN28,and SALL4) at a level equivalent to those of control hiPSC 201B7. The sSOM with unsupervised method demonstrated that the CSCs could be divided into three groups based on their culture conditions and original cancer tissues. Furthermore,with supervised method,sSOM nominated TMED9,RNASE1,NGFR,ST3GAL1,TNS4,BTG2,SLC16A3,CD177,CES1,GDF15,STMN2,FAM20A,NPPB,CD99,MYL7,PRSS23,AHNAK,and LOC152573 genes commonly upregulating among the CSCs compared to hiPSC,suggesting the gene signature of the CSCs.
View Publication
Levesque J-P et al. (JUL 2004)
Blood 104 1 65--72
Characterization of hematopoietic progenitor mobilization in protease-deficient mice.
Recent evidence suggests that protease release by neutrophils in the bone marrow may contribute to hematopoietic progenitor cell (HPC) mobilization. Matrix metalloproteinase-9 (MMP-9),neutrophil elastase (NE),and cathepsin G (CG) accumulate in the bone marrow during granulocyte colony-stimulating factor (G-CSF) treatment,where they are thought to degrade key substrates including vascular cell adhesion molecule-1 (VCAM-1) and CXCL12. To test this hypothesis,HPC mobilization was characterized in transgenic mice deficient in one or more hematopoietic proteases. Surprisingly,HPC mobilization by G-CSF was normal in MMP-9-deficient mice,NE x CG-deficient mice,or mice lacking dipeptidyl peptidase I,an enzyme required for the functional activation of many hematopoietic serine proteases. Moreover,combined inhibition of neutrophil serine proteases and metalloproteinases had no significant effect on HPC mobilization. VCAM-1 expression on bone marrow stromal cells decreased during G-CSF treatment of wild-type mice but not NE x CG-deficient mice,indicating that VCAM-1 cleavage is not required for efficient HPC mobilization. G-CSF induced a significant decrease in CXCL12 alpha protein expression in the bone marrow of Ne x CG-deficient mice,indicating that these proteases are not required to down-regulate CXCL12 expression. Collectively,these data suggest a complex model in which both protease-dependent and -independent pathways may contribute to HPC mobilization.
View Publication
Taubert I et al. (APR 2011)
Cytotherapy 13 4 459--66
Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor.
BACKGROUND AIMS: Previous studies have demonstrated that the combination of granulocyte-colony-stimulating factor (G-CSF) + plerixafor is more efficient in mobilizing CD34(+) hematopoietic stem cells (HSC) into the peripheral blood than G-CSF alone. In this study we analyzed the impact of adding plerixafor to G-CSF upon the mobilization of different HSC subsets. METHODS: We characterized the immunophenotype of HSC subsets isolated from the peripheral blood of eight patients with multiple myeloma (MM) before and after treatment with plerixafor. All patients were supposed to collect stem cells prior to high-dose chemotherapy and consecutive autologous stem cell transplantation,and therefore received front-line mobilization with 4 days of G-CSF followed by a single dose of plerixafor. Samples of peripheral blood were analyzed comparatively by flow cytometry directly before and 12 h after administration of plerixafor. RESULTS: The number of aldehyde dehydrogenase (ALDH)(bright) and CD34(+) cells was significantly higher after plerixafor treatment (1.2-5.0 and 1.5-6.0 times; both P textless 0.01) and an enrichment of the very primitive CD34(+) CD38(-) and ALDH(bright) CD34(+) CD38(-) HSC subsets was detectable. Additionally,two distinct ALDH(+) subsets could be clearly distinguished. The small ALDH(high) subset showed a higher number of CD34(+) CD38(-) cells in contrast to the total ALDH(bright) subpopulation and probably represented a very primitive subpopulation of HSC. CONCLUSIONS: A combined staining of ALDH,CD34 and CD38 might represent a powerful tool for the identification of a very rare and primitive hematopoietic stem cell subset. The addition of plerixafor mobilized not only more CD34(+) cells but was also able to increase the proportion of more primitive stem cell subsets.
View Publication
Poulin LF et al. (JUN 2010)
The Journal of experimental medicine 207 6 1261--71
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells.
In mouse,a subset of dendritic cells (DCs) known as CD8alpha+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However,translation into clinical protocols has been hampered by the failure to identify CD8alpha+ DCs in humans. Here,we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8alpha+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8alpha+ DCs,human DNGR-1+ BDCA3hi DCs express Necl2,CD207,BATF3,IRF8,and TLR3,but not CD11b,IRF4,TLR7,or (unlike CD8alpha+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8,but not of TLR7,and produce interleukin (IL)-12 when given innate and T cell-derived signals. Notably,DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.
View Publication
Zhang S et al. (MAR 2017)
Stem cell research 19 34--36
Characterization of human induced pluripotent stem cell (iPSC) line from a 72year old male patient with later onset Alzheimer's disease.
Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.
View Publication