Hakala H et al. (JUL 2009)
Tissue engineering Part A 15 7 1775--85
Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines
Long-term in vitro culture of undifferentiated human embryonic stem cells (hESCs) traditionally requires a fibroblast feeder cell layer. Using feeder cells in hESC cultures is highly laborious and limits large-scale hESC production for potential application in regenerative medicine. Replacing feeder cells with defined human extracellular matrix (ECM) components or synthetic biomaterials would be ideal for large-scale production of clinical-grade hESCs. We tested and compared different feeder cell-free hESC culture methods based on different human ECM proteins,human and animal sera matrices,and a Matrigel matrix. Also selected biomaterials were tested for feeder cell-free propagation of undifferentiated hESCs. The matrices were tested together with conventional and modified hESC culture media,human foreskin fibroblast-conditioned culture medium,chemically defined medium,TeSR1,and modified TeSR1 media. The results showed the undefined,xenogeneic Matrigel to be a superior matrix for hESC culture compared with the purified human ECM proteins,serum matrices,and the biomaterials tested. A long-term,feeder cell-free culture system was successful on Matrigel in combination with mTeSR1 culture medium,but a xeno-free,fully defined,and reproducible feeder cell-free hESC culture method still remains to be developed.
View Publication
Kikuchi C et al. (JAN 2015)
Cell Transplantation 24 12 2491--2504
Comparison of cardiomyocyte differentiation potential between type 1 diabetic donor- and nondiabetic donor-derived induced pluripotent stem cells
Type 1 diabetes mellitus (T1DM) is the most common type of diabetes in children and adolescents. Diabetic subjects are more likely to experience a myocardial infarction compared to nondiabetic subjects. In recent years,induced pluripotent stem cells (iPSCs) have received increasing attention from basic scientists and clinicians and hold promise for myocardial regeneration due to their unlimited proliferation potential and differentiation capacity. However,cardiomyogenesis of type 1 diabetic donor-derived iPSCs (T1DM-iPSCs) has not been investigated yet. The aim of the study was to comparatively analyze cardiomyocyte (CM) differentiation capacity of nondiabetic donor-derived iPSCs (N-iPSCs) and T1DM-iPSCs. The differentiated CMs were confirmed by both expression of cardiac-specific markers and presence of cardiac action potential. Since mitochondrial bioenergetics is vital to every aspect of CM function,extracellular acidification rates and oxygen consumption rates were measured using Seahorse extracellular flux analyzer. The results showed that N-iPSCs and T1DMiPSCs demonstrated similar capacity of differentiation into spontaneously contracting CMs exhibiting nodal-,atrial-,or ventricular-like action potentials. Differentiation efficiency was up to 90%. In addition,the CMs differentiated from N-iPSCs and T1DM-iPSCs (N-iPSC-CMs and T1DM-iPSC-CMs,respectively) showed 1) well-regulated glucose utilization at the level of glycolysis and mitochondrial oxidative phosphorylation and 2) the ability to switch metabolic pathways independent of extracellular glucose concentration. Collectively,we demonstrate for the first time that T1DM-iPSCs can differentiate into functional CMs with well-regulated glucose utilization as shown in N-iPSCs,suggesting that T1DM-iPSC-CMs might be a promising autologous cell source for myocardial regeneration in type 1 diabetes patients.
View Publication
Akopian V et al. (APR 2010)
In vitro cellular & developmental biology. Animal 46 3-4 247--258
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells.
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support,but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study,five separate laboratories,each with experience in human embryonic stem cell culture,used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods,with propagation in the presence of Knockout Serum Replacer,FGF-2,and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment,death,and differentiated morphology by phase contrast microscopy,for growth by serial cell counts,and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems,only the control and those based on two commercial media,mTeSR1 and STEMPRO,supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment,cell death,or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study,and the lack of success with other formulations from academic groups compared to previously published results,include: the complex combination of growth factors present in the commercial preparations; improved development,manufacture,and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.
View Publication
Bahl V et al. (DEC 2012)
Reproductive Toxicology 34 4 529--37
Comparison of electronic cigarette refill fluid cytotoxicity using embryonic and adult models
Electronic cigarettes (EC) and refill fluids are distributed with little information on their pre- and postnatal health effects. This study compares the cytotoxicity of EC refill fluids using embryonic and adult cells and examines the chemical characteristics of refill fluids using HPLC. Refill solutions were tested on human embryonic stem cells (hESC),mouse neural stem cells (mNSC),and human pulmonary fibroblasts (hPF) using the MTT assay,and NOAELs and IC50s were determined from dose-response curves. Spectral analysis was performed when products of the same flavor had different MTT outcomes. hESC and mNSC were generally more sensitive to refill solutions than hPF. All products from one company were cytotoxic to hESC and mNSC,but non-cytotoxic to hPF. Cytotoxicity was not due to nicotine,but was correlated with the number and concentration of chemicals used to flavor fluids. Additional studies are needed to fully assess the prenatal effect of refill fluids. ?? 2012 Elsevier Inc.
View Publication
Telugu BP et al. (JUL 2013)
Placenta 34 7 536--543
Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas
AbstractIntroduction Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited,there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast,and express HLA-G,a marker of EVT. The goals of the present study were to further characterize the HLA-G+ cells derived from BMP4-treated hESC,and determine their suitability as a model. Methods HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G+ and HLA-G−/TACSTD2+ populations with immunomagnetic beads and expression profiles analyzed by microarray. Results There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent,stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7,and the majority were also HLA-G+. Gene expression profiles revealed that HLA-G+,BMP4-treated hESC were similar to,but distinct from,HLA-G+ cells isolated from first trimester placentas. Whereas HLA-G+ and HLA-G− cells from first trimester placentas had highly divergent gene expression profiles,HLA-G+ and HLA-G− cells from BMP4-treated hESC had somewhat similar profiles,and both expressed genes characteristic of early trophoblast development. Conclusions We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage.
View Publication
Dobo I et al. (JAN 2001)
The hematology journal : the official journal of the European Haematology Association / EHA 2 6 396--403
Comparison of four serum-free, cytokine-free media for analysis of endogenous erythroid colony growth in polycythemia vera and essential thrombocythemia.
INTRODUCTION: The assay of endogenous erythroid colony formation (EEC),a characteristic of polycythemia vera and essential thrombocythemia,is not standardized. In this multicentric study,we tested four semisolid,serum-free,cytokine-free media based on either methylcellulose (M1,M2) or collagen (C1,C2) commercialized for the EEC assay. MATERIALS AND METHODS: Bone marrow mononuclear cells (BMMC) from 73 individuals (62 patients with either polycythemia vera (26),essential thrombocythemia (19),secondary polyglobuly (17) or chronic myeloid leukemia (2) and 11 healthy donors) were grown in parallel in the four media without,or with 0.01 U/ml erythropoietin (EPo). RESULTS: In all four media EEC formation was specific,as it was not observed in cultures of patients with secondary polyglobuly or chronic myeloid leukemia,nor of healthy donors. Analysis of fresh or MGG-stained collagen gel cultures allowed detection of EEC formation significantly more frequently than methylcellulose-based media; addition of 0.01 U/ml of EPo had little or no effect on EEC formation. Collagen-based medium C1 gave better results than the other media tested: the 'C1' EEC assay was positive for 68.2% of polycythemia vera cultures with significantly higher median EEC numbers (6.5/10(5) BMMC for patients with one major criteria of polycythemia vera and 19 and 21/10(5) BMMC for patients with two or three major criteria,respectively). Medium C1 was also better for essential thrombocythemia cultures with 47.4% of positive results but with a low median EEC number (6.7/10(5) BMMC). When associated with the ELISA dosage of serum EPo,the 'C1' EEC assay allowed confirmation or elimination of the diagnosis of polycythemia vera for 91% (20/22) of polyglobulic patients. CONCLUSION: We propose that serum-free collagen-based culture systems be considered to standardize the EEC assay,now part of the new criteria of polycythemia vera.
View Publication
Yin D et al. (JAN 2012)
Methods in molecular biology (Clifton,N.J.) 873 247--259
Comparison of neural differentiation potential of human pluripotent stem cell lines using a quantitative neural differentiation protocol.
Neural differentiation of human embryonic (ES) and induced pluripotent (iPS) stem cell lines has been used for research in early human development,drug discovery,and cell replacement therapies. It is critical to establish generic differentiation protocols to compare the neural specification potential of each individually derived pluripotent stem cell line and identify the efficacious lines for research and therapeutic use. Here,we describe a reproducible and quantitative protocol to assess the neural progenitor (NP) generation of human pluripotent stem cell lines. This method includes a robust and well-defined neural inducing platform for Pax6(+) neural rosette (neuroectodermal cells) generation,propagation,and subsequent differentiation into nestin(+) NPs. A side-by-side comparison under common culture conditions among three human ES cell lines,TE03,TE06,and BG01V,and one iPS cell line,HD02,showed highly variable efficiency in their differentiation into NPs.
View Publication
Harris RA et al. (OCT 2010)
Nature biotechnology 28 10 1097--1105
Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS),and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage,resolution,cost,concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls,the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This,along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states,identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression.
View Publication
Yabe S et al. (MAY 2016)
Proceedings of the National Academy of Sciences of the United States of America 113 19 E2598----607
Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds,an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation,areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast,each with the potential to transport a wide range of solutes and synthesize placental hormones,their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
View Publication
Mallon BS et al. (MAR 2014)
Stem Cell Research 12 2 376--386
Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin
Many studies have compared the genetic and epigenetic profiles of human induced pluripotent stem cells (hiPSCs) to human embryonic stem cells (hESCs) and yet the picture remains unclear. To address this,we derived a population of neural precursor cells (NPCs) from the H1 (WA01) hESC line and generated isogenic iPSC lines by reprogramming. The gene expression and methylation profile of three lines were compared to the parental line and intermediate NPC population. We found no gene probe with expression that differed significantly between hESC and iPSC samples under undifferentiated or differentiated conditions. Analysis of the global methylation pattern also showed no significant difference between the two PSC populations. Both undifferentiated populations were distinctly different from the intermediate NPC population in both gene expression and methylation profiles. One point to note is that H1 is a male line and so extrapolation to female lines should be cautioned. However,these data confirm our previous findings that there are no significant differences between hESCs and hiPSCs at the gene expression or methylation level.
View Publication
Lin S et al. (NOV 2010)
Toxicological Sciences 118 1 202--12
Comparison of the toxicity of smoke from conventional and harm reduction cigarettes using human embryonic stem cells.
This study evaluated the hypothesis that smoke from harm reduction cigarettes impedes attachment and proliferation of H9 human embryonic stem cells (hESCs). Smoke from three harm reduction brands was compared with smoke from a conventional brand. Doses of smoke were measured in puff equivalents (PE) (1 PE = the amount of smoke in one puff that dissolves in 1 ml of medium). Cytotoxic doses were determined using morphological criteria and trypan blue staining,and apoptosis was confirmed using Magic Red staining. Attachment and proliferation of hESC were followed at a noncytotoxic dose in time-lapse videos collected using BioStation technology. Data were mined from videos either manually or using video bioinformatics subroutines developed with CL-Quant software. Mainstream (MS) and sidestream (SS) smoke from conventional and harm reduction cigarettes induced apoptosis in hESC colonies at 1 PE. At 0.1 PE (noncytotoxic),SS smoke from all brands inhibited attachment of hESC colonies to Matrigel with the strongest inhibition occurring in harm reduction brands. At 0.1 PE,SS smoke,but not MS smoke,from all brands inhibited hESC growth,and two harm reduction brands were more potent than the conventional brand. In general,hESC appeared more sensitive to smoke than their mouse ESC counterparts. Although harm reduction cigarettes are often marketed as safer than conventional brands,our assays show that SS smoke from harm reduction cigarettes was at least as potent or in some cases more potent than smoke from a conventional brand and that SS smoke was more inhibitory than MS smoke in all assays.
View Publication
Leclerc E et al. (JAN 2017)
Genomics 109 1 16--26
Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.
We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore,the results of the transcriptomic profile,coupled with immunostaining,and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells,hepatocytes like cells,and endothelial like cells. However,the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless,the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.
View Publication