Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray
BACKGROUND: Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells,such as embryonic stem cells and induced pluripotent stem cells,appear to have a hypermethylated status compared with differentiated cells. However,the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally,differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.backslashnbackslashnMETHODOLOGY: Here,we determined the DNA methylation profiles of 10 human cell lines,including 2 ESC lines,4 virally derived iPSC lines,2 episomally derived iPSC lines,and the 2 parental cell lines from which the iPSCs were derived using Illumina's Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness,whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.backslashnbackslashnCONCLUSIONS: This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods,the corresponding somatic cells,and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.
View Publication
Xie Y et al. (NOV 2014)
Stem Cell Reports 3 5 743--757
Defining the role of oxygen tension in human neural progenitor fate
Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2??-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined,these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here,we show that low O2 tension and hypoxiainducible factor (HIF) activity instead promote appropriate hESC differentiation. Through gain- and loss-of-function studies,we implicate O2 tension as a modifier of a key cell fate decision,namely whether neural progenitors differentiate toward neurons or glia. Furthermore,our data show that even transient changes in O2 concentration can affect cell fate through HIF by regulating the activity of MYC,a regulator of LIN28/let-7 that is critical for fate decisions in the neural lineage.We also identify key small molecules that can take advantage of this pathway to quickly and efficiently promote the development of mature cell types.
View Publication
Grajales L et al. (APR 2010)
Journal of molecular and cellular cardiology 48 4 735--45
Delayed enrichment of mesenchymal cells promotes cardiac lineage and calcium transient development.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential,previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage,culture milieu,and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin(-) BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine+2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA+5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA,39% and LS,28%). A second sequential enrichment for the dihydropyridine receptor subunit alpha2delta1 (DHPR-alpha2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1(+) enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca(2+) transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion,IP CD117/Sca-1(+) murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore,temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-alpha2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.
View Publication
Shao L et al. (JUN 2010)
Blood 115 23 4707--14
Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.
Bone marrow injury is a major adverse side effect of radiation and chemotherapy. Attempts to limit such damage are warranted,but their success requires a better understanding of how radiation and anticancer drugs harm the bone marrow. Here,we report one pivotal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). Puma deficiency in mice confers resistance to high-dose radiation in a hematopoietic cell-autonomous manner. Unexpectedly,loss of one Puma allele is sufficient to confer mice radioresistance. Interestingly,null mutation in Puma protects both primitive and differentiated hematopoietic cells from damage caused by low-dose radiation but selectively protects HSCs and HPCs against high-dose radiation,thereby accelerating hematopoietic regeneration. Consistent with these findings,Puma is required for radiation-induced apoptosis in HSCs and HPCs,and Puma is selectively induced by irradiation in primitive hematopoietic cells,and this induction is impaired in Puma-heterozygous cells. Together,our data indicate that selective targeting of p53 downstream apoptotic targets may represent a novel strategy to protecting HSCs and HPCs in patients undergoing intensive cancer radiotherapy and chemotherapy.
View Publication
Hu X et al. (JAN 2006)
Blood 107 2 821--6
Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes.
The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However�
View Publication
Kaplan IM et al. (MAR 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 5 2826--34
Deletion of tristetraprolin caused spontaneous reactive granulopoiesis by a non-cell-autonomous mechanism without disturbing long-term hematopoietic stem cell quiescence.
Tristetraprolin (TTP,Zfp36,Nup475,Tis11) dramatically reduces the stability of target mRNAs by binding to AU-rich elements in their 3' untranslated regions. Through this mechanism,TTP functions as a rheostatic,temporal regulator of gene expression. TTP knockout (KO) mice exhibit completely penetrant granulocytic hyperplasia. We have shown that the hematopoietic stem-progenitor cell compartment in TTP KO mice is also altered. Although no change was detected in long-term hematopoietic stem cell (HSC) frequency or function,as assayed by immunophenotypic markers or limiting dilution transplants,we observed increases in the frequencies and numbers of short-term HSCs,multipotent progenitors,and granulocyte-monocyte progenitors. This pattern is consistent with reactive granulopoiesis�
View Publication
Radan L et al. ( 2016)
1341 133--142
Delivering antisense morpholino oligonucleotides to target telomerase splice variants in human embryonic stem cells
Morpholino oligonucleotides (MO) are an innovative tool that provides a means for examining and modifying gene expression outcomes by antisense interaction with targeted RNA transcripts. The site-specific nature of their binding facilitates focused modulation to alter splice variant expression patterns. Here we describe the steric-blocking of human telomerase reverse transcriptase (hTERT) $$$$ and $$$$ splice variants using MO to examine cellular outcomes related to pluripotency and differentiation in human embryonic stem cells.
View Publication
Delivery of Proteases in Aqueous Two-Phase Systems Enables Direct Purification of Stem Cell Colonies from Feeder Cell Co-Cultures for Differentiation into Functional Cardiomyocytes
Patterning of bioactive enzymes with subcellular resolution is achieved by dispensing droplets of dextran (DEX) onto polyethylene glycol (PEG)-covered cells though a glass capillary needle connected to a pneumatic pump. This technique is applied to purify colonies of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblast (MEF) feeder cultures and inefficiently induced iPSC colonies by selectively dissociating the iPSCs with proteases.
View Publication
Khan M et al. (JUL 2013)
Biomaterials 34 21 5336--5343
Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector
Protein delivery allows a clinical effect to be directly realized without genetic modification of the host cells. We have developed a cationic bolaamphiphile as a non-viral vector for protein delivery application. The relatively low toxicity and efficient protein delivery by the cationic bolaamphiphile prompted us to test the system for the generation of induced pluripotent stem cells (iPSCs) as an alternative to the conventional vector-based genetic approach. Studies on the kinetics and cytotoxicity of the protein delivery system led us to use an optimized cationic bolaamphiphile-protein complex ratio of 7:1 (wt/wt) and a 3 h period of incubation with human fibroblasts,to ensure complete and non-toxic protein delivery of the reprogramming proteins. The reprogrammed cells were shown to exhibit the characteristics of embryonic stem cells,including expression of pluripotent markers,teratoma formation in SCID mice,and ability to be differentiated into a specific lineage,as exemplified by neuronal differentiation.
View Publication
Pfeifer A et al. (SEP 2001)
Proceedings of the National Academy of Sciences of the United States of America 98 20 11450--5
Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo.
The Cre recombinase (Cre) from bacteriophage P1 is an important tool for genetic engineering in mammalian cells. We constructed lentiviral vectors that efficiently deliver Cre in vitro and in vivo. Surprisingly,we found a significant reduction in proliferation and an accumulation in the G(2)/M phase of Cre-expressing cells. To minimize the toxic effect of Cre,we designed a lentiviral vector that integrates into the host genome,expresses Cre in the target cell,and is subsequently deleted from the genome in a Cre-dependent manner. Thus,the activity of Cre terminates its own expression (self-deleting). We showed efficient modification of target genes in vitro and in the brain after transduction with the self-deleting vectors. In contrast to sustained Cre expression,transient expression of Cre from the self-deleting vector induced significantly less cytotoxicity. Such a self-deleting Cre vector is a promising tool for the induction of conditional gene modifications with minimal Cre toxicity in vivo.
View Publication
Maitra R et al. (AUG 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 3 1485--91
Dendritic cell-mediated in vivo bone resorption.
Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo,de novo osteoclastogenesis is observed but it is currently unknown whether,besides increased osteoclast differentiation from undifferentiated precursors,other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study,an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment,the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally,chromosomal painting identified nuclei from female DCs,previously injected into a male recipient,among the nuclei of giant cells at sites of osteolysis. Finally,osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r(-/-) mice,which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether,our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases.
View Publication
Atari M et al. (JUL 2012)
Journal of cell science 125 Pt 14 3343--56
Dental pulp of the third molar: a new source of pluripotent-like stem cells.
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However,no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work,we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF,EGF and PDGF. These cells are SSEA4(+),OCT3/4(+),NANOG(+),SOX2(+),LIN28(+),CD13(+),CD105(+),CD34(-),CD45(-),CD90(+),CD29(+),CD73(+),STRO1(+) and CD146(-),and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly,DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm,endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4,GATA6,MIXL1,NANOG,OCT3/4,SOX1 and SOX2 to determine the degree of similarity between DPPSCs,EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs,hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages,they represent an easily accessible source of stem cells,which opens a range of new possibilities for regenerative medicine.
View Publication