Rao RA et al. (FEB 2015)
Scientific reports 5 8229
Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming.
Factor induced reprogramming of fibroblasts is an orchestrated but inefficient process. At the epigenetic level,it results in drastic chromatin changes to erase the existing somatic memory" and to establish the pluripotent state. Accordingly�
View Publication
Ye L et al. ( 2015)
1299 103--114
Fabrication of a myocardial patch with cells differentiated from human-induced pluripotent stem cells
The incidence of cardiovascular disease represents a significant and growing health-care challenge to the developed and developing world. The ability of native heart muscle to regenerate in response to myocardial infarct is minimal. Tissue engineering and regenerative medicine approaches represent one promising response to this difficulty. Here,we present methods for the construction of a cell-seeded cardiac patch with the potential to promote regenerative outcomes in heart muscle with damage secondary to myocardial infarct. This method leverages iPS cells and a fibrin-based scaffold to create a simple and commercially viable tissue-engineered cardiac patch. Human-induced pluripotent stem cells (hiPSCs) can,in principle,be differentiated into cells of any lineage. However,most of the protocols used to generate hiPSC-derived endothelial cells (ECs) and cardiomyocytes (CMs) are unsatisfactory because the yield and phenotypic stability of the hiPSC-ECs are low,and the hiPSC-CMs are often purified via selection for expression of a promoter-reporter construct. In this chapter,we describe an hiPSC-EC differentiation protocol that generates large numbers of stable ECs and an hiPSC-CM differentiation protocol that does not require genetic manipulation,single-cell selection,or sorting with fluorescent dyes or other reagents. We also provide a simple but effective method that can be used to combine hiPSC-ECs and hiPSC-CMs with hiPSC-derived smooth muscle cells to engineer a contracting patch of cardiac cells.
View Publication
Li J et al. (DEC 2015)
Biomedical microdevices 17 6 105
Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture.
The generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres,which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution,as well as the resulting PCL microsphere size,are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight. Higher viscosity and Q d/Q c lead to the formation of larger droplets,within two observed formation modes: dripping and jetting. At low viscosity of dispersed phase and Q d/Q c,the microfluidic device is operated in dripping mode,which generates droplets and microspheres with greater size uniformity. Solutions with lower molecular weight PCL have lower viscosity,resulting in a wider concentration range for the dripping mode. When coated with extracellular matrix (ECM) proteins,the fabricated PCL microspheres are demonstrated capable of supporting the expansion of human embryonic stem cells.
View Publication
Fan Y et al. (NOV 2013)
Tissue Engineering Part A 20 3-4 131128071850006
Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
A prerequisite for the realization of human pluripotent stem cell (hPSC) therapies is the development of bioprocesses for generating clinically relevant quantities of undifferentiated hPSCs and their derivatives under xeno-free conditions. Microcarrier stirred-suspension bioreactors are an appealing modality for the scalable expansion and directed differentiation of hPSCs. Comparative analyses of commercially available microcarriers clearly show the need for developing synthetic substrates supporting the adhesion and growth of hPSCs in three-dimensional cultures under agitation-induced shear. Moreover,the low seeding efficiencies during microcarrier loading with hPSC clusters poses a significant process bottleneck. To that end,a novel protocol was developed increasing hPSC seeding efficiency from 30% to over 80% and substantially shortening the duration of microcarrier loading. Importantly,this method was combined with the engineering of polystyrene microcarriers by surface conjugation of a vitronectin-derived peptide,which was previously shown to support the growth of human embryonic stem cells. Cells proliferated on peptide-conjugated beads in static culture but widespread detachment was observed after exposure to stirring. This prompted additional treatment of the microcarriers with a synthetic polymer commonly used to enhance cell adhesion. hPSCs were successfully cultivated on these microcarriers in stirred suspension vessels for multiple consecutive passages with attachment efficiencies close to 40%. Cultured cells exhibited on average a 24-fold increase in concentration per 6-day passage,over 85% viability,and maintained a normal karyotype and the expression of pluripotency markers such as Nanog,Oct4,and SSEA4. When subjected to spontaneous differentiation in embryoid body cultures or directed differentiation to the three embryonic germ layers,the cells adopted respective fates displaying relevant markers. Lastly,engineered microcarriers were successfully utilized for the expansion and differentiation of hPSCs to mesoderm progeny in stirred suspension vessels. Hence,we demonstrate a strategy for the facile engineering of xeno-free microcarriers for stirred-suspension cultivation of hPSCs. Our findings support the use of microcarrier bioreactors for the scalable,xeno-free propagation and differentiation of human stem cells intended for therapies.
View Publication
Ma N et al. (MAY 2015)
Journal of Biological Chemistry 290 19 12079--12089
Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in $\$-Thalassemia Induced Pluripotent Stem Cells (iPSCs).
The generation of personalized induced pluripotent stem cells (iPSCs) followed by targeted genome editing provides an opportunity for developing customized effective cellular therapies for genetic disorders. However,it is critical to ascertain whether edited iPSCs harbor unfavorable genomic variations before their clinical application. To examine the mutation status of the edited iPSC genome and trace the origin of possible mutations at different steps,we have generated virus-free iPSCs from amniotic cells carrying homozygous point mutations in beta-hemoglobin gene (HBB) that cause severe beta-thalassemia (beta-Thal),corrected the mutations in both HBB alleles by zinc finger nuclease-aided gene targeting,and obtained the final HBB gene-corrected iPSCs by excising the exogenous drug resistance gene with Cre recombinase. Through comparative genomic hybridization and whole-exome sequencing,we uncovered seven copy number variations,five small insertions/deletions,and 64 single nucleotide variations (SNVs) in beta-Thal iPSCs before the gene targeting step and found a single small copy number variation,19 insertions/deletions,and 340 single nucleotide variations in the final gene-corrected beta-Thal iPSCs. Our data revealed that substantial but different genomic variations occurred at factor-induced somatic cell reprogramming and zinc finger nuclease-aided gene targeting steps,suggesting that stringent genomic monitoring and selection are needed both at the time of iPSC derivation and after gene targeting.
View Publication
Rosenberg S et al. (JAN 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 1 203--13
FADD deficiency impairs early hematopoiesis in the bone marrow.
Signal transduction mediated by Fas-associated death domain protein (FADD) represents a paradigm of coregulation of apoptosis and cellular proliferation. During apoptotic signaling induced by death receptors including Fas,FADD is required for the recruitment and activation of caspase 8. In addition,a death receptor-independent function of FADD is essential for embryogenesis. In previous studies,FADD deficiency in embryonic stem cells resulted in a complete lack of B cells and dramatically reduced T cell numbers,as shown by Rag1(-/-) blastocyst complementation assays. However,T-specific FADD-deficient mice contained normal numbers of thymocytes and slightly reduced peripheral T cell numbers,whereas B cell-specific deletion of FADD led to increased peripheral B cell numbers. It remains undetermined what impact an FADD deficiency has on hematopoietic stem cells and progenitors. The current study analyzed the effect of simultaneous deletion of FADD in multiple cell types,including bone marrow cells,by using the IFN-inducible Mx1-cre transgene. The resulting FADD mutant mice did not develop lymphoproliferation diseases,unlike Fas-deficient mice. Instead,a time-dependent depletion of peripheral FADD-deficient lymphocytes was observed. In the bone marrow,a lack of FADD led to a dramatic decrease in the hematopoietic stem cells and progenitor-enriched population. Furthermore,FADD-deficient bone marrow cells were defective in their ability to generate lymphoid,myeloid,and erythroid cells. Thus,the results revealed a temporal requirement for FADD. Although dispensable during lymphopoiesis post lineage commitment,FADD plays a critical role in early hematopoietic stages in the bone marrow.
View Publication
Thomson AW and Horne CH (NOV 1975)
Transplantation 20 5 435--7
Failure of carrageenan to affect graft-versus-host reactivity in the rat.
Pilon AM et al. (DEC 2008)
Molecular and cellular biology 28 24 7394--401
Failure of terminal erythroid differentiation in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2.
Erythroid Krüppel-like factor (EKLF) is a Krüppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf(-/-)) mice die at day 14.5 of gestation from severe anemia. In this study,we demonstrate that early progenitor cells fail to undergo terminal erythroid differentiation in Eklf(-/-) embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis,transcriptional profiling was performed with RNA from wild-type and Eklf(-/-) early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation,with the critical regulator of the cell cycle,E2f2,at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf(-/-) early erythroid progenitor cells,which showed a delay in the G(1)-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier,EKLF binding sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.
View Publication
Vanuytsel K et al. (SEP 2014)
Stem Cell Research 13 2 240--250
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood,aside from numerous congenital abnormalities. FA mouse models have been generated; however,they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero,a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology,we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential,disruption of the second allele causes a severe growth disadvantage. As a result,heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele,quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning,this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. ?? 2014.
View Publication
Zhang Q-S et al. (DEC 2010)
Blood 116 24 5140--8
Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol.
Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure,we found that Fancd2(-/-) mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit(+)Sca-1(+)Lineage(-) (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2(-/-) KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition,the supportive function of the marrow microenvironment was compromised in Fancd2(-/-) mice. Treatment with Sirt1-mimetic and the antioxidant drug,resveratrol,maintained Fancd2(-/-) KSL cells in quiescence,improved the marrow microenvironment,partially corrected the abnormal cell cycle status,and significantly improved the spleen colony-forming capacity of Fancd2(-/-) bone marrow cells. We conclude that Fancd2(-/-) mice have readily quantifiable hematopoietic defects,and that this model is well suited for pharmacologic screening studies.
View Publication
Agrawal P et al. (APR 2016)
ACS applied materials & interfaces 8 14 8870--8874
Fast, Efficient, and Gentle Transfection of Human Adherent Cells in Suspension
We demonstrate a highly efficient method for gene delivery into clinically relevant human cell types,such as induced pluripotent stem cells (iPSCs) and fibroblasts,reducing the protocol time by one full day. To preserve cell physiology during gene transfer,we designed a microfluidic strategy,which facilitates significant gene delivery in a short transfection time (textless1 min) for several human cell types. This fast,optimized and generally applicable cell transfection method can be used for rapid screening of different delivery systems and has significant potential for high-throughput cell therapy applications.
View Publication
Kawamura M et al. (SEP 2012)
Circulation 126 11 Suppl 1 S29----37
Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model.
BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However,several issues,especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPS cells,must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting large numbers of cells. We hypothesized that hiPS-CM-sheet transplantation would be feasible,safe,and therapeutically effective for the treatment of ischemic cardiomyopathy.backslashnbackslashnMETHODS AND RESULTS: Human iPS cells were established by infecting human dermal fibroblasts with a retrovirus carrying Oct3/4,Sox2,Klf4,and c-Myc. Cardiomyogenic differentiation was induced by WNT signaling molecules,yielding hiPS-CMs that were almost 90% positive for α-actinin,Nkx2.5,and cardiac troponin T. hiPS-CM sheets were created using thermoresponsive dishes and transplanted over the myocardial infarcts in a porcine model of ischemic cardiomyopathy induced by ameroid constriction of the left anterior descending coronary artery (n=6 for the iPS group receiving sheet transplantation and the sham-operated group; both groups received tacrolimus daily). Transplantation significantly improved cardiac performance and attenuated left ventricular remodeling. hiPS-CMs were detectable 8 weeks after transplantation,but very few survived long term. No teratoma formation was observed in animals that received hiPS-CM sheets.backslashnbackslashnCONCLUSIONS: The culture system used yields a large number of highly pure hiPS-CMs,and hiPS-CM sheets could improve cardiac function after ischemic cardiomyopathy. This newly developed culture system and the hiPS-CM sheets may provide a basis for the clinical use of hiPS cells in cardiac regeneration therapy.
View Publication