Koh S et al. (MAR 2013)
Stem cells and development 22 6 951--63
Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts.
In mice and humans,it has been shown that embryonic and adult fibroblasts can be reprogrammed into pluripotency by introducing 4 transcription factors,Oct3/4,Klf4,Sox2,and c-Myc (OKSM). Here,we report the derivation of induced pluripotent stem cells (iPSCs) from adult canine fibroblasts by retroviral OKSM transduction. The isolated canine iPSCs (ciPSCs) were expanded in 3 different culture media [fibroblast growth factor 2 (FGF2),leukemia inhibitory factor (LIF),or FGF2 plus LIF]. Cells cultured in both FGF2 and LIF expressed pluripotency markers [POU5F1 (OCT4),SOX2,NANOG,and LIN28] and embryonic stem cell (ESC)-specific genes (PODXL,DPPA5,FGF5,REX1,and LAMP1) and showed strong levels of alkaline phosphatase expression. In vitro differentiation by formation of embryoid bodies and by directed differentiation generated cell derivatives of all 3 germ layers as confirmed by mRNA and protein expression. In vivo,the ciPSCs created solid tumors,which failed to reach epithelial structure formation,but expressed markers for all 3 germ layers. Array comparative genomic hybridization and chromosomal fluorescence in situ hybridization analyses revealed that while retroviral transduction per se did not result in significant DNA copy number imbalance,there was evidence for the emergence of low-level aneuploidy during prolonged culture or tumor formation. In summary,we were able to derive ciPSCs from adult fibroblasts by using 4 transcription factors. The isolated iPSCs have similar characteristics to ESCs from other species,but the exact cellular mechanisms behind their unique co-dependency on both FGF2 and LIF are still unknown.
View Publication
Patel R and Alahmad AJ ( 2016)
Fluids and barriers of the CNS 13 6
BACKGROUND Patient-derived induced pluripotent stem cells (iPSCs) are an innovative source as an in vitro model for neurological diseases. Recent studies have demonstrated the differentiation of brain microvascular endothelial cells (BMECs) from various stem cell sources,including iPSC lines. However,the impact of the culturing conditions used to maintain such stem cell pluripotency on their ability to differentiate into BMECs remains undocumented. In this study,we investigated the effect of different sources of Matrigel and stem cell maintenance medium on BMEC differentiation efficiency. METHODS The IMR90-c4 iPSC line was maintained on mTeSR1 or in essential-8 (E-8) medium on growth factor-reduced (GFR) Matrigel from three different manufacturers. Cells were differentiated into BMECs following published protocols. The phenotype of BMEC monolayers was assessed by immunocytochemistry. Barrier function was assessed by transendothelial electrical resistance (TEER) and permeability to sodium fluorescein,whereas the presence of drug efflux pumps was assessed by uptake assay using fluorescent substrates. RESULTS Stem cell maintenance medium had little effect on the yield and barrier phenotype of IMR90-derived BMECs. The source of GFR-Matrigel used for the differentiation process significantly impacted the ability of IMR90-derived BMECs to form tight monolayers,as measured by TEER and fluorescein permeability. However,the Matrigel source had minimal effect on BMEC phenotype and drug efflux pump activity. CONCLUSION This study supports the ability to differentiate BMECs from iPSCs grown in mTeSR1 or E-8 medium and also suggests that the origin of GFR-Matrigel has a marked inpact on BMEC barrier properties.
View Publication
Kitajima K et al. (JAN 2016)
Experimental hematology 44 1 10--68
GSK3$\$ activates the CDX/HOX pathway and promotes hemogenic endothelial progenitor differentiation from human pluripotent stem cells.
WNT/$\$-CATENIN signaling promotes the hematopoietic/endothelial differentiation of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs). The transient addition of a GSK3$\$ (GSKi) has been found to facilitate in vitro endothelial cell differentiation from hESCs/hiPSCs. Because hematopoietic and endothelial cells are derived from common progenitors (hemogenic endothelial progenitors [HEPs]),we examined the effect of transient GSKi treatment on hematopoietic cell differentiation from hiPSCs. We found that transient GSKi treatment at the start of hiPSC differentiation induction altered the gene expression profile of the cells. Multiple CDX/HOX genes,which are expressed in the posterior mesoderm of developing embryos,were significantly upregulated by GSKi treatment. Further,inclusion of the GSKi in a serum- and stroma-free culture with chemically defined medium efficiently induced HEPs,and the HEPs gave rise to various lineages of hematopoietic and endothelial cells. Therefore,transient WNT/$\$-CATENIN signaling triggers activation of the CDX/HOX pathway,which in turn confers hemogenic posterior mesoderm identity to differentiating hiPSCs. These data enhance our understanding of human embryonic hematopoietic/endothelial cell development and provide a novel in vitro system for inducing the differentiation of hematopoietic cells from hiPSCs.
View Publication
Ku M et al. ( 2012)
Genome biology 13 10 R85
H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions.
BACKGROUND: The histone variant H2A.Z has been implicated in nucleosome exchange,transcriptional activation and Polycomb repression. However,the relationships among these seemingly disparate functions remain obscure.backslashnbackslashnRESULTS: We mapped H2A.Z genome-wide in mammalian ES cells and neural progenitors. H2A.Z is deposited promiscuously at promoters and enhancers,and correlates strongly with H3K4 methylation. Accordingly,H2A.Z is present at poised promoters with bivalent chromatin and at active promoters with H3K4 methylation,but is absent from stably repressed promoters that are specifically enriched for H3K27 trimethylation. We also characterized post-translational modification states of H2A.Z,including a novel species dually-modified by ubiquitination and acetylation that is enriched at bivalent chromatin.backslashnbackslashnCONCLUSIONS: Our findings associate H2A.Z with functionally distinct genomic elements,and suggest that post-translational modifications may reconcile its contrasting locations and roles.
View Publication
Boxall SA et al. (APR 2009)
Bone marrow transplantation 43 8 627--35
Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells.
We have demonstrated previously that cord blood CD133(+) cells isolated in the G(0) phase of the cell cycle are highly enriched for haematopoietic stem cell (HSC) activity,in contrast to CD133(+)G(1) cells. Here,we have analysed the phenotype and functional properties of this population in more detail. Our data demonstrate that a large proportion of the CD133(+)G(0) cells are CD38 negative (60.4%) and have high aldehyde dehydrogenase activity (75.1%) when compared with their CD133(+)G(1) counterparts (13.5 and 4.1%,respectively). This suggests that stem cell activity resides in the CD133(+)G(0) population. In long-term BM cultures,the CD133(+)G(0) cells generate significantly more progenitors than the CD34(+)G(0) population (Ptextless0.001) throughout the culture period. Furthermore,a comparison of CD133(+)G(0) versus CD133(+)G(1) cells revealed that multilineage reconstitution was obtained only in non-obese diabetic/SCID animals receiving G(0) cells. We conclude that CD133(+) cells in the quiescent phase of the cell cycle have a phenotype consistent with HSCs and are highly enriched for repopulating activity when compared with their G(1) counterparts. This cell population should prove useful for selection and manipulation in ex vivo expansion protocols.
View Publication
Sugimura R et al. (MAY 2017)
Nature 545 7655 432--438
Haematopoietic stem and progenitor cells from human pluripotent stem cells.
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens,or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here,to yield functional human haematopoietic stem cells,we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG,HOXA5,HOXA9,HOXA10,LCOR,RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid,B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
View Publication
Dutt S et al. (MAR 2011)
Blood 117 9 2567--76
Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells.
Haploinsufficiency for ribosomal protein genes has been implicated in the pathophysiology of Diamond-Blackfan anemia (DBA) and the 5q-syndrome,a subtype of myelodysplastic syndrome. The p53 pathway is activated by ribosome dysfunction,but the molecular basis for selective impairment of the erythroid lineage in disorders of ribosome function has not been determined. We found that p53 accumulates selectively in the erythroid lineage in primary human hematopoietic progenitor cells after expression of shRNAs targeting RPS14,the ribosomal protein gene deleted in the 5q-syndrome,or RPS19,the most commonly mutated gene in DBA. Induction of p53 led to lineage-specific accumulation of p21 and consequent cell cycle arrest in erythroid progenitor cells. Pharmacologic inhibition of p53 rescued the erythroid defect,whereas nutlin-3,a compound that activates p53 through inhibition of HDM2,selectively impaired erythropoiesis. In bone marrow biopsies from patients with DBA or del(5q) myelodysplastic syndrome,we found an accumulation of nuclear p53 staining in erythroid progenitor cells that was not present in control samples. Our findings indicate that the erythroid lineage has a low threshold for the induction of p53,providing a basis for the failure of erythropoiesis in the 5q-syndrome,DBA,and perhaps other bone marrow failure syndromes.
View Publication
Sun W and Downing JR (DEC 2004)
Blood 104 12 3565--72
Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors.
The AML1/CBFbeta transcriptional complex is essential for the formation of definitive hematopoietic stem cells (HSCs). Moreover,development of the hematopoietic system is exquisitely sensitive to the level of this complex. To investigate the effect of AML1 dosage on adult hematopoiesis,we compared the hematopoietic systems of AML1+/- and AML1+/+ mice. Surprisingly,loss of a single AML1 allele resulted in a 50% reduction in long-term repopulating hematopoietic stem cells (LTR-HSCs). This decrease did not,however,extend to the next level of hematopoietic differentiation. Instead,AML1+/- mice had an increase in multilineage progenitors,an expansion that resulted in enhanced engraftment following transplantation. The expanded pool of AML1+/- progenitors remained responsive to homeostatic mechanisms and thus the number of mature cells in most lineages remained within normal limits. Two notable exceptions were a decrease in CD4(+) T cells,leading to an inversion of the CD4(+) to CD8(+) T-cell ratio and a decrease in circulating platelets. These data demonstrate a dosage-dependent role for AML1/CBFbeta in regulating the quantity of HSCs and their downstream committed progenitors,as well as a more restricted role in T cells and platelets. The latter defect mimics one of the key abnormalities in human patients with the familial platelet disorder resulting from AML1 haploinsufficiency.
View Publication
Mattis VB et al. (JUN 2014)
Human Molecular Genetics 24 11 3257--3271
HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity
Huntington's disease (HD) is a fatal neurodegenerative disease,caused by expansion of polyglutamine repeats in the Huntingtin gene,with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however,the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines,which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity,as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed,blocking glutamate signaling,not just through the NMDA but also mGlu and AMPA/Kainate receptors,completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together,these results provide important insight into HD mechanisms at early developmental time points,which may suggest novel approaches to HD therapeutics.
View Publication
Nguyen T et al. (MAY 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 10 3219--32
HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo.
PURPOSE: The purpose of this study was to determine whether histone deacetylase (HDAC) inhibitors (HDACI) such as vorinostat or entinostat (SNDX-275) could increase the lethality of the dual Bcr/Abl-Aurora kinase inhibitor KW-2449 in various Bcr/Abl(+) human leukemia cells,including those resistant to imatinib mesylate (IM). EXPERIMENTAL DESIGN: Bcr/Abl(+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) cells,including those resistant to IM (T315I,E255K),were exposed to KW-2449 in the presence or absence of vorinostat or SNDX-275,after which apoptosis and effects on signaling pathways were examined. In vivo studies combining HDACIs and KW2449 were carried out by using a systemic IM-resistant ALL xenograft model. RESULTS: Coadministration of HDACIs synergistically increased KW-2449 lethality in vitro in multiple CML and Ph(+) ALL cell types including human IM resistant cells (e.g.,BV-173/E255K and Adult/T315I). Combined treatment resulted in inactivation of Bcr/Abl and downstream targets (e.g.,STAT5 and CRKL),as well as increased reactive oxygen species (ROS) generation and DNA damage (γH2A.X). The latter events and cell death were significantly attenuated by free radical scavengers (TBAP). Increased lethality was also observed in primary CD34(+) cells from patients with CML,but not in normal CD34(+) cells. Finally,minimally active vorinostat or SNDX275 doses markedly increased KW2449 antitumor effects and significantly prolonged the survival of murine xenografts bearing IM-resistant ALL cells (BV173/E255K). CONCLUSIONS: HDACIs increase KW-2449 lethality in Bcr/Abl(+) cells in association with inhibition of Bcr/Abl,generation of ROS,and induction of DNA damage. This strategy preferentially targets primary Bcr/Abl(+) hematopoietic cells and exhibits enhanced in vivo activity. Combining KW-2449 with HDACIs warrants attention in IM-resistant Bcr/Abl(+) leukemias.
View Publication
Staron M et al. (JUN 2011)
Blood 117 26 7136--44
Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex.
The platelet glycoprotein Ib-IX-V complex (GPIb-IX-IV) is the receptor for VWF and is responsible for VWF-mediated platelet activation and aggregation. Loss of the GPIb-IX-V complex is pathogenic for Bernard-soulier Syndrome (BSS),which is characterized by macrothrombocytopenia and impaired platelet function. It remains unclear how the GPIb-IX-V complex is assembled and whether there is a role for a specific molecular chaperone in the process. In the present study,we report that the assembly of the GPIb-IX-V complex depends critically on a molecular chaperone in the endoplasmic reticulum (ER): gp96 (also known as grp94 and HSP90b1). gp96/grp94 deletion in the murine hematopoietic system results in thrombocytopenia,prolonged bleeding time,and giant platelets that are clinically indistinguishable from human BSS. Loss of gp96/grp94 in vivo and in vitro leads to the concomitant reduction in GPIb-IX complex expression due to ER-associated degradation. We further demonstrate that gp96/grp94 binds selectively to the GPIX subunit,but not to gpIbα or gpIbβ. Therefore,we identify the platelet GPIX subunit of the GPIb-IX-V complex as an obligate and novel client of gp96/grp94.
View Publication
Trowbridge JJ et al. (SEP 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 38 14134--9
Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration.
The signals that control the regenerative ability of hematopoietic stem cells (HSCs) in response to damage are unknown. Here,we demonstrate that downstream activation of the Hedgehog (Hh) signaling pathway induces cycling and expansion of primitive bone marrow hematopoietic cells under homeostatic conditions and during acute regeneration. However,this effect is at the expense of HSC function,because continued Hh activation during regeneration represses expression of specific cell cycle regulators,leading to HSC exhaustion. In vivo treatment with an inhibitor of the Hh pathway rescues these transcriptional and functional defects in HSCs. Our study establishes Hh signaling as a regulator of the HSC cell cycle machinery that balances hematopoietic homeostasis and regeneration in vivo.
View Publication