Ahmadi S et al. ( 2017)
npj Genomic Medicine 2 1 12
Phenotypic profiling of CFTR modulators in patient-derived respiratory epithelia
Pulmonary disease is the major cause of morbidity and mortality in patients with cystic fibrosis,a disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Heterogeneity in CFTR genotype-phenotype relationships in affected individuals plus the escalation of drug discovery targeting specific mutations highlights the need to develop robust in vitro platforms with which to stratify therapeutic options using relevant tissue. Toward this goal,we adapted a fluorescence plate reader assay of apical CFTR-mediated chloride conductance to enable profiling of a panel of modulators on primary nasal epithelial cultures derived from patients bearing different CFTR mutations. This platform faithfully recapitulated patient-specific responses previously observed in the gold-standard but relatively low-throughput Ussing chamber. Moreover using this approach we identified a novel strategy with which to augment the response to an approved drug in specific patients. In proof of concept studies we also validated the use of this platform in measuring drug responses in lung cultures differentiated from cystic fibrosis iPS cells. Taken together we show that this medium throughput assay of CFTR activity has the potential to stratify cystic fibrosis patient-specific responses to approved drugs and investigational compounds in vitro in primary and iPS cell-derived airway cultures.
View Publication
Aufderheide M and Emura M (JUL 2017)
Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 69 6 393--401
Phenotypical changes in a differentiating immortalized bronchial epithelial cell line after exposure to mainstream cigarette smoke and e-cigarette vapor.
3D constructs composed of differentiated immortalized primary normal human bronchial epithelial (NHBE) cells (CL-1548) were repeatedly exposed at the air-liquid interface to non-lethal concentrations of mainstream cigarette smoke (4 cigarettes a day,5days/week,8 repetitions in total) and e-cigarette vapor (50 puffs a day,5 days/week,8 repetitions in total) to build up a permanent burden on the cells. Samples were taken after 4,6 and 8 times of repeated smoke exposure and the cultures were investigated using histopathological methods Compared to the clean air-exposed cultures (process control) and incubator control,the aerosol-exposed cultures showed a reduction of ciliated,mucus-producing and club cells. At the end of the exposure phase,we even found metaplastic areas positive for CK13 antibody in the cultures exposed to mainstream cigarette smoke and e-liquid vapor,commonly seen in squamous cells as a marker for non-cornified squamous epithelium. The control cultures (incubator cells) showed no comparable phenotypical changes. In conclusion,our in vitro model presents a valuable tool to study the induction of phenotypical changes after exposure to hazardous airborne material.
View Publication
Yu Z et al. ( 2017)
Toxicology in Vitro 42 April 319--328
Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator
To better characterize biological responses to atmospheric organic aerosols,the efficient delivery of aerosol to in vitro lung cells is necessary. In this study,chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device,the particle dose was predicted for various sampling parameters such as particle size,ESP deposition voltage,and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example,RNA in the ALI BEAS-2B cells in vitro was stable at 0.15 L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e.,viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15 L/minute,and no cellular RNA decay occurred.
View Publication
Bartel S et al. (APR 2017)
Scientific reports 7 March 46026
Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma.
Asthma is highly prevalent,but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study,we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore,deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17,miR-144,and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment,while it's expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally,we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies.
View Publication
Gilpin SE et al. ( 2016)
Biomaterials 108 111--119
Regenerative potential of human airway stem cells in lung epithelial engineering
Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure,without the risk of rejection. Building upon the process of whole organ perfusion decellularization,we aimed to develop novel,translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5+TP63+ basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation,in combination with primary pulmonary endothelial cells. To show clinical scalability,and to test the regenerative capacity of the basal cell population in a human context,we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology,and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.
View Publication
Ishikawa S and Ito S ( 2016)
Toxicology in Vitro 38 170--178
Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue
In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response,and observed a significant increase in secretion of IL-8,GRO-α,IL-1β,and GM-CSF. Interestingly,secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes.
View Publication
Deng X et al. ( 2016)
PLoS Pathogens 12 1 1--25
Replication of an autonomous human parvovirus in non-dividing human airway epithelium is facilitated through the DNA damage and repair pathways
Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family,and is an emerging human pathogenic respiratory virus. In vitro,HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells,we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably,HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase-related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and,more importantly,we identified that two Y-family DNA polymerases,Pol eta and Pol kappa,are involved in HBoV1 genome amplification. Overall,we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells,which is dependent on the cellular DNA damage and repair pathways.
View Publication
Griggs TF et al. ( 2017)
Respiratory research 18 1 84
Rhinovirus C targets ciliated airway epithelial cells.
BACKGROUND The Rhinovirus C (RV-C),first identified in 2006,produce high symptom burdens in children and asthmatics,however,their primary target host cell in the airways remains unknown. Our primary hypotheses were that RV-C target ciliated airway epithelial cells (AECs),and that cell specificity is determined by restricted and high expression of the only known RV-C cell-entry factor,cadherin related family member 3 (CDHR3). METHODS RV-C15 (C15) infection in differentiated human bronchial epithelial cell (HBEC) cultures was assessed using immunofluorescent and time-lapse epifluorescent imaging. Morphology of C15-infected differentiated AECs was assessed by immunohistochemistry. RESULTS C15 produced a scattered pattern of infection,and infected cells were shed from the epithelium. The percentage of cells infected with C15 varied from 1.4 to 14.7% depending on cell culture conditions. Infected cells had increased staining for markers of ciliated cells (acetylated-alpha-tubulin [aat],p < 0.001) but not markers of goblet cells (wheat germ agglutinin or Muc5AC,p = ns). CDHR3 expression was increased on ciliated epithelial cells,but not other epithelial cells (p < 0.01). C15 infection caused a 27.4% reduction of ciliated cells expressing CDHR3 (p < 0.01). During differentiation of AECs,CDHR3 expression progressively increased and correlated with both RV-C binding and replication. CONCLUSIONS The RV-C only replicate in ciliated AECs in vitro,leading to infected cell shedding. CDHR3 expression positively correlates with RV-C binding and replication,and is largely confined to ciliated AECs. Our data imply that factors regulating differentiation and CDHR3 production may be important determinants of RV-C illness severity.
View Publication
挂图
SnapShot: GI Tract Development
Overview of gastrointestinal tract specification signals and summary of pancreatic cellular hierarchy and cell markers