Sakuma M et al. (JAN 2016)
Science and technology of advanced materials 17 1 473--482
Quantitative evaluation of malignant gliomas damage induced by photoactivation of IR700 dye.
The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser,and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility,we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed,whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells,as monitored by a pH indicator,was decreased and then gradually increased by the illumination of IR700,while the pH in BT142 cells increased monotonically. In these experiments,the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH.
View Publication
Daynac M et al. (JUL 2013)
Stem Cell Research 11 1 516--528
Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage
Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis,generating new neurons throughout life. Until now,their isolation has not been reported,which has hampered studies of their regulatory mechanisms. We sorted by FACS quiescent NSCs and their progeny from the subventricular zone (SVZ) of adult mice according to the expression of the NSC marker LeX/CD15,the EGF receptor (EGFR) and the CD24 in combination with the vital DNA marker Hoechst 33342. Characterization of sorted cells showed that the LeX(bright)/EGFR-negative population was enriched in quiescent cells having an NSC phenotype. In contrast to proliferating NSCs and progenitors,the LeX(bright)/EGFR-negative cells,i.e. quiescent NSCs,resisted to a moderate dose of gamma-radiation (4Gy),entered the cell cycle two days after irradiation prior to EGFR acquisition and ultimately repopulated the SVZ. We further show that the GABAAR signaling regulates their cell cycle entry by using specific GABAAR agonists/antagonists and that the radiation-induced depletion of neuroblasts,the major GABA source,provoked their proliferation in the irradiated SVZ. Our study demonstrates that quiescent NSCs are specifically enriched in the LeX(bright)/EGFR-negative population,and identifies the GABAAR signaling as a regulator of the SVZ niche size by modulating the quiescence of NSCs.
View Publication
Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b.
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However,successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here,using microRNA (miRNA) expression profile analyses,we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2,a let-7-targeting gene,enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly,HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2,whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together,these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal,providing a strategy for the clinical treatment of neurological diseases.
View Publication
I. Canals et al. (SEP 2018)
Nature methods 15 9 693--696
Rapid and efficient induction of functional astrocytes from human pluripotent stem cells.
The derivation of astrocytes from human pluripotent stem cells is currently slow and inefficient. We demonstrate that overexpression of the transcription factors SOX9 and NFIB in human pluripotent stem cells rapidly and efficiently yields homogeneous populations of induced astrocytes. In our study these cells exhibited molecular and functional properties resembling those of adult human astrocytes and were deemed suitable for disease modeling. Our method provides new possibilities for the study of human astrocytes in health and disease.
View Publication
Busskamp V et al. (NOV 2014)
Molecular systems biology 10 11 760
Rapid neurogenesis through transcriptional activation in human stem cells.
Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However,it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here,we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days,at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis,thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional,morphological and functional signatures of differentiated neurons,with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons,suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.
View Publication
Ji M et al. (SEP 2013)
Science Translational Medicine 5 201 201ra119--201ra119
Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy
Surgery is an essential component in the treatment of brain tumors. However,delineating tumor from normal brain remains a major challenge. We describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology,SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from nonneoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and hematoxylin and eosin microscopy for detection of glioma infiltration (κ = 0.98). Finally,we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue,SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct.
View Publication
Goustard-Langelier B et al. (JAN 2013)
The Journal of nutritional biochemistry 24 1 380--7
Rat neural stem cell proliferation and differentiation are durably altered by the in utero polyunsaturated fatty acid supply.
We isolated neural stem cells/neural progenitors (NSC) from 1-day-old rat pups born to mothers fed diets that were deficient or supplemented with n-3 polyunsaturated fatty acids (PUFAs) and compared their proliferation and differentiation in vitro. The cells isolated from the n-3PUFA-deficient pups consistently proliferated more slowly than cells that were isolated from n-3PUFA-supplemented pups,despite the fact that both were cultured under the same conditions. The differences in the proliferation rates were evaluated up until 40 days of culture and were highly significant. When the cells were allowed to differentiate,the deficient cells exhibited a higher degree of neuronal maturation in response to the addition of PUFAs in the medium,as demonstrated by an increase in neurite length,whereas the neurons derived from the supplemented pups showed no change. This result was consistent,regardless of the age of the culture. The properties of the NSC were durably modified throughout the length of the culture,although the membrane phospholipid compositions were similar. We examined the differential expression of selected mRNAs and micro RNAs. We found significant differences in the gene expression of proliferating and differentiating cells,and a group of genes involved in neurogenesis was specifically modified by n-3 PUFA treatment. We conclude that n-3 PUFA levels in the maternal diet can induce persistent modifications of the proliferation and differentiation of NSCs and of their transcriptome. Therefore,the n-3 supply received in utero may condition on a long-term basis cell renewal in the brain.
View Publication
Bagci-Onder T et al. (JUN 2013)
Oncogene 32 23 2818--27
Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors.
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and its efficacy has been tested in pre-clinical models by delivering it systemically as a purified ligand or via engineered stem cells (SC). However,about 50% of tumor lines are resistant to TRAIL and overcoming TRAIL resistance in aggressive tumors,such as glioblastoma-multiforme (GBM),and understanding the molecular dynamics of TRAIL-based combination therapies are critical to broadly use TRAIL as a therapeutic agent. In this study,we developed death receptor (DR)4/5-reporters that offer an imaging-based platform to identify agents that act in concert with a potent,secretable variant of TRAIL (S-TRAIL) by monitoring changes in DR4/5 expression. Utilizing these reporters,we show a differential regulation of DR4/5 when exposed to a panel of clinically relevant agents. A histone deacetylase inhibitor,MS-275,resulted in upregulation of DR4/5 in all GBM cell lines,and these changes could be followed in real time both in vitro and in vivo in mice bearing tumors and they correlated with increased TRAIL sensitivity. To further assess the dynamics of combinatorial strategies that overcome resistance of tumors to SC released S-TRAIL,we also engineered tumor cells to express live-cell caspase-reporters and SCs to express S-TRAIL. Utilizing DR4/5 and caspase reporters in parallel,we show that MS-275 sensitizes TRAIL-resistant GBM cells to stem cell (SC) delivered S-TRAIL by changing the time-to-death in vitro and in vivo. This study demonstrates the effectiveness of a combination of real-time reporters of TRAIL-induced apoptosis pathway in evaluating the efficacy of SC-TRAIL-based therapeutics and may have implications in targeting a broad range of cancers.
View Publication
E. Gabriel et al. (JAN 2017)
Cell stem cell 20 3 397--406.e5
Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids.
The recent Zika virus (ZIKV) epidemic is associated with microcephaly in newborns. Although the connection between ZIKV and neurodevelopmental defects is widely recognized,the underlying mechanisms are poorly understood. Here we show that two recently isolated strains of ZIKV,an American strain from an infected fetal brain (FB-GWUH-2016) and a closely-related Asian strain (H/PF/2013),productively infect human iPSC-derived brain organoids. Both of these strains readily target to and replicate in proliferating ventricular zone (VZ) apical progenitors. The main phenotypic effect was premature differentiation of neural progenitors associated with centrosome perturbation,even during early stages of infection,leading to progenitor depletion,disruption of the VZ,impaired neurogenesis,and cortical thinning. The infection pattern and cellular outcome differ from those seen with the extensively passaged ZIKV strain MR766. The structural changes we see after infection with these more recently isolated viral strains closely resemble those seen in ZIKV-associated microcephaly.
View Publication
Niu H et al. (MAR 2017)
Neuroscience Letters 642 71--76
Recombinant insulin-like growth factor binding protein-4 inhibits proliferation and promotes differentiation of neural progenitor cells
Insulin-like growth factor (IGF) is involved in regulating many processes during neural development,and IGF binding protein-4 (IGFBP4) functions as a modulator of IGF actions or in an IGF-independent manner (e.g.,via inhibiting Wnt/β-catenin signaling). In the present study,neural progenitor cells (NPCs) were isolated from the forebrain of newborn mice to investigate effects of IGFBP4 on the proliferation and differentiation of NPCs. The proliferation of NPCs was evaluated using Cell Counting Kit-8 (CCK-8) after treatment with or without IGFBP4 as well as blockers of IGF-IR and β-catenin. Phosphorylation levels of Akt,Erk1,2 and p38 were analyzed by Western blotting. The differentiation of NPCs was evaluated using immunofluorescence and Western blotting. It was shown that exogenous IGFBP4 significantly inhibited the proliferation of NPCs and it did not induce a more pronounced inhibition of cell proliferation after blockade of IGF-IR but it did after antagonism of β-catenin. Akt phosphorylation was significantly decreased and phosphorylation levels of Erk1,2 and p38 were not significantly changed in IGFBP4-treated NPCs. Excessive IGFBP4 significantly promoted NPCs to differentiate into astrocytes and neurons. These data suggested that exogenous IGFBP4 inhibits proliferation and promotes differentiation of neural progenitor cells mainly through IGF-IR signaling pathway.
View Publication
Soltys J et al. (SEP 2010)
Biochemical and biophysical research communications 400 1 21--6
Regulation of neural progenitor cell fate by anandamide.
Exogenous application of neural progenitor cells (NPCs) has successful implications in treating brain disorders,and research is beginning to identify ways to mimic this exogenous application by activating endogenous stem cell compartments. The recent discovery of a functional endocannabinoid system in murine NPCs (mNPCs) represents one potential therapeutic means to influence endogenous stem cell compartments. High levels of the endogenous cannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) persist during CNS inflammation and infection. The goal of this study was to assess the influence of AEA on mNPCs to identify how the endocannabinoid system influences mNPCs in vitro,a potential model to investigate effects of endocannabinoids on endogenous stem cell compartments. Our results show that AEA affects mNPC cell fate determination. Initial glial differentiation was observed,followed by induction of neuronal differentiation with AEA treatment. Cell survival and apoptosis was not affected by AEA. These effects were coupled by an increased phosphorylation of cAMP-responsive element (CRE) binding protein (CREB).
View Publication
Booth L et al. (OCT 2014)
Molecular Cancer Therapeutics 13 10 2384--2398
Regulation of OSU-03012 Toxicity by ER Stress Proteins and ER Stress-Inducing Drugs
The present studies examined the toxic interaction between the non-coxib celecoxib derivative OSU-03012 and phosphodiesterase 5 (PDE5) inhibitors,and also determined the roles of endoplasmic reticulum stress response regulators in cell survival. PDE5 inhibitors interacted in a greater than additive fashion with OSU-03012 to kill parental glioma and stem-like glioma cells. Knockdown of the endoplasmic reticulum stress response proteins IRE1 or XBP1 enhanced the lethality of OSU-03012,and of [OSU-03012 + PDE5 inhibitor] treatment. Pan-caspase and caspase-9 inhibition did not alter OSU-03012 lethality but did abolish enhanced killing in the absence of IRE1 or XBP1. Expression of the mitochondrial protective protein BCL-XL or the caspase-8 inhibitor c-FLIP-s,or knockdown of death receptor CD95 or the death receptor caspase-8 linker protein FADD,suppressed killing by [OSU-03012 + PDE5 inhibitor] treatment. CD95 activation was blocked by the nitric oxide synthase inhibitor L-NAME. Knockdown of the autophagy regulatory proteins Beclin1 or ATG5 protected the cells from OSU-03012 and from [OSU-03012 + PDE5 inhibitor] toxicity. Knockdown of IRE1 enhanced OSU-03012/[OSU-03012 + PDE5 inhibitor]-induced JNK activation,and inhibition of JNK suppressed the elevated killing caused by IRE1 knockdown. Knockdown of CD95 blunted JNK activation. Collectively,our data demonstrate that PDE5 inhibitors recruit death receptor signaling to enhance OSU-03012 toxicity in glioblastoma multiforme (GBM) cells.
View Publication