Xiong X et al. (NOV 2015)
Journal of controlled release : official journal of the Controlled Release Society 217 113--20
Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier.
The blood-brain barrier (BBB),comprised of brain endothelial cells with tight junctions (TJ) between them,regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of a broad range of brain disorders. Current strategies for BBB opening are invasive,not specific,and lack precise control over the site and timing of BBB opening,which may limit their clinical translation. In the present report,we describe a novel approach based on a combination of stem cell delivery,heat-inducible gene expression and mild heating with high-intensity focused ultrasound (HIFU) under MRI guidance to remotely permeabilize BBB. The permeabilization of the BBB will be controlled with,and limited to where selected pro-inflammatory factors will be secreted secondary to HIFU activation,which is in the vicinity of the engineered stem cells and consequently both the primary and secondary disease foci. This therapeutic platform thus represents a non-invasive way for BBB opening with unprecedented spatiotemporal precision,and if properly and specifically modified,can be clinically translated to facilitate delivery of different diagnostic and therapeutic agents which can have great impact in treatment of various disease processes in the central nervous system.
View Publication
Haile Y et al. (MAR 2015)
PLoS ONE 10 3 e0119617
Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs), generation and characterization of HiPSC-derived neurons and astrocytes
Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC) technology has provided novel opportunities in disease modeling,drug development,screening,and the potential for patient-matched" cellular therapies in neurodegenerative diseases. In this study�
View Publication
Grenier G et al. (DEC 2007)
Stem cells (Dayton,Ohio) 25 12 3101--10
Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis.
A novel population of tissue-resident endothelial precursors (TEPs) was isolated from small blood vessels in dermal,adipose,and skeletal muscle of mouse based on their ability to be grown as spheres. Cellular and molecular analyses of these cells revealed that they were highly related regardless of the tissue of origin and distinct from embryonic neural stem cells. Notably,TEPs did not express hematopoietic markers,but they expressed numerous characteristics of angiogenic precursors and their differentiated progeny,such as CD34,Flk-1,Tie-1,CD31,and vascular endothelial cadherin (VE-cadherin). TEPs readily differentiated into endothelial cells in newly formed vascular networks following transplantation into regenerating skeletal muscle. Taken together,these experiments suggest that TEPs represent a novel class of endothelial precursors that are closely associated with small blood vessels in muscle,adipose,and dermal tissue. This finding is of particular interest since it could bring new insight in cancer angiogenesis and collateral blood vessels developed following ischemia. Disclosure of potential conflicts of interest is found at the end of this article.
View Publication
El-Helou V et al. (NOV 2005)
Hypertension 46 5 1219--25
Resident nestin+ neural-like cells and fibers are detected in normal and damaged rat myocardium.
The present study examined whether nestin+ neural-like stem cells detected in the scar tissue of rats 1 week after myocardial infarction (MI) were derived from bone marrow and/or were resident cells of the normal myocardium. Irradiated male Wistar rats transplanted with beta-actin promoter-driven,green fluorescent protein (GFP)-labeled,unfractionated bone marrow cells were subjected to coronary artery ligation. Three weeks after MI,GFP-labeled bone marrow cells were detected in the infarct region,and a modest number were associated with nestin immunoreactivity. The paucity of GFP+/nestin+ cells in the scar tissue provided the impetus to explore whether neural-like stem cells were derived from cardiac tissue. Nestin mRNA and immunoreactivity were detected in normal rat myocardium,and transcript levels were increased in the damaged heart after MI. In primary-passage,cardiac tissue-derived neural cells,filamentous nestin staining was associated with a diffuse,cytoplasmic glial fibrillary acidic protein signal. Unexpectedly,in viable myocardium,numerous nestin+/glial fibrillary acidic protein+ fiberlike structures of varying length were detected and observed in close proximity to neurofilament-M+ fibers. The infarct region was likewise innervated,and the preponderance of neurofilament-M+ fibers appeared to be physically associated with nestin+ fiberlike structures. These data highlight the novel observation that the normal rat heart contained resident nestin+/glial fibrillary acidic protein+ neural-like stem cells,fiberlike structures,and nestin mRNA levels that were increased in response to myocardial ischemia. Cardiac tissue-derived neural stem cell migration to the infarct region and concomitant nestin+ fiberlike innervation represent obligatory events of reparative fibrosis in the damaged rat myocardium.
View Publication
K. B. Langer et al. (APR 2018)
Stem cell reports 10 4 1282--1293
Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells.
Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs,this class of cell is remarkably diverse,comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models,but less attention has been paid to human RGCs. Thus,efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics,confirming the combinatorial expression of molecular markers associated with these subtypes,and also provided insight into more subtype-specific markers. Thus,the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.
View Publication
Xu X et al. (MAR 2017)
Stem Cell Reports 8 3 619--633
Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs.
View Publication
Chakrabarti L et al. (JAN 2012)
Frontiers in oncology 2 82
Reversible adaptive plasticity: a mechanism for neuroblastoma cell heterogeneity and chemo-resistance.
We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered,anchorage dependent (AD) or sphere forming,anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin,self-renewal capacity,and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2,β-catenin,and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice,tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity,respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic,dynamic,and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.
View Publication
Brohawn DG et al. (AUG 2016)
PloS one 11 8 e0160520
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord.
ALS is a rapidly progressive,devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression,and molecular insights into pathogenesis and progression are sorely needed. In that context,we used high-depth,next generation RNA sequencing (RNAseq,Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned textgreater50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2,DEseq2,EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples,with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNF$$-induced protein 2 (TNFAIP2) as a major network hub" gene (WGCNA). Using the oPOSSUM algorithm�
View Publication
Chen C et al. (JUL 2014)
Nature communications 5 4430
Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells.
Down's syndrome (DS),caused by trisomy of human chromosome 21,is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons,and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally,we show that the FDA-approved antibiotic drug,minocycline,partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B,GFAP,inducible nitric oxide synthase,and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.
View Publication
Hirai S et al. (MAR 2012)
The EMBO journal 31 5 1190--202
RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.
Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure,Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here,we report that a transcriptional factor,RP58,negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently,Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore,Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally,we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.
View Publication
Donangelo I et al. (JAN 2014)
Endocrine Related Cancer 21 2 203--216
Sca1+ murine pituitary adenoma cells show tumor-growth advantage
The role of tumor stem cells in benign tumors such as pituitary adenomas remains unclear. In this study,we investigated whether the cells within pituitary adenomas that spontaneously develop in Rb+/- mice are hierarchically distributed with a subset being responsible for tumor growth. Cells derived directly from such tumors grew as spheres in serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor. Some cells within growing pituitary tumor spheres (PTS) expressed common stem cell markers (Sca1,Sox2,Nestin,and CD133),but were devoid of hormone-positive differentiated cells. Under subsequent differentiating conditions (matrigel-coated growth surface),PTS expressed all six pituitary hormones. We next searched for specific markers of the stem cell population and isolated a Sca1(+) cell population that showed increased sphere formation potential,lower mRNA hormone expression,higher expression of stem cell markers (Notch1,Sox2,and Nestin),and increased proliferation rates. When transplanted into non-obese diabetic-severe combined immunodeficiency gamma mice brains,Sca1(+) pituitary tumor cells exhibited higher rates of tumor formation (brain tumors observed in 11/11 (100%) vs 7/12 (54%) of mice transplanted with Sca1(+) and Sca1(-) cells respectively). Magnetic resonance imaging and histological analysis of brain tumors showed that tumors derived from Sca1(+) pituitary tumor cells were also larger and plurihormonal. Our findings show that Sca1(+) cells derived from benign pituitary tumors exhibit an undifferentiated expression profile and tumor-proliferative advantages,and we propose that they could represent putative pituitary tumor stem/progenitor cells.
View Publication
Li Q et al. (AUG 2016)
Scientific reports 6 31915
Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.
There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods,however,cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (˜50 days,10 passages tested,accumulative ˜>10(10)-fold expansion) with both high growth rate (˜20-fold expansion/7 days) and high volumetric yield (˜2.0%A-%10(7)%cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient,affordable glioblastoma TICs for drug discovery.
View Publication