Fuller HR et al. (JAN 2015)
Frontiers in cellular neuroscience 9 January 506
Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development.
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons,and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts,whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably,UBA1 was significantly decreased in SMA motor neurons,supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons,including beta III-tubulin and UCHL1,were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts,highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons,and for the identification of novel biomarker and therapeutic targets for SMA.
View Publication
Zhou C et al. (APR 2015)
The Journal of clinical investigation 125 4 1692--702
STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion.
Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however,regulatory mechanisms that promote GH hypersecretion remain elusive. Here,we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover,STAT3 and GH expression were concordant in a somatotroph adenoma tissue array. Promoter and expression analysis in a GH-secreting rat cell line (GH3) revealed that STAT3 specifically binds the Gh promoter and induces transcription. Stable expression of STAT3 in GH3 cells induced expression of endogenous GH,and expression of a constitutively active STAT3 further enhanced GH production. Conversely,expression of dominant-negative STAT3 abrogated GH expression. In primary human somatotroph adenoma-derived cell cultures,STAT3 suppression with the specific inhibitor S3I-201 attenuated GH transcription and reduced GH secretion in the majority of derivative cultures. In addition,S3I-201 attenuated somatotroph tumor growth and GH secretion in a rat xenograft model. GH induced STAT3 phosphorylation and nuclear translocation,indicating a positive feedback loop between STAT3 and GH in somatotroph tumor cells. Together,these results indicate that adenoma GH hypersecretion is the result of STAT3-dependent GH induction,which in turn promotes STAT3 expression,and suggest STAT3 as a potential therapeutic target for pituitary somatotroph adenomas.
View Publication
Stipcevic T et al. (DEC 2013)
Acta Neurologica Belgica 113 4 501--506
Stimulation of adult neural stem cells with a novel glycolipid biosurfactant
Glycolipids are amphipathic molecules which are highly expressed on cell membranes in skin and brain where they mediate several key cellular processes. Neural stem cells are defined as undifferentiated,proliferative,multipotential cells with extensive self-renewal and are responsive to brain injury. Di-rhamnolipid: α-L-rhamnopyranosyl-(1-2)α-L-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoic acid,also referred to as di-rhamnolipid BAC-3,is a glycolipid isolated from the bacteria Pseudomonas aeruginosa. In the previous studies,di-rhamnolipid enhanced dermal tissue healing and regeneration. The present study provides the first assessment of di-rhamnolipid,and glycolipid biosurfactants in general,on the nervous system. Treatment of neural stem cells isolated from the lateral ventricle of adult mice and cultured in defined media containing growth factors at 0.5 and 1 μg/ml of di-rhamnolipid increased the number of neurospheres (2.7- and 2.8-fold,respectively) compared to controls and this effect remained even after passaging in the absence of di-rhamnolipid. In addition,neural stem cells treated with di-rhamnolipid at 50 and 100 μg/ml in defined media supplemented with fetal calf serum and without growth factors exhibited increased cell viability,indicating an interaction between di-rhamnolipid and serum components in the regulation of neural stem cells and neuroprogenitors. Intracerebroventricular administration of di-rhamnolipid at 300 and 120 ng/day increased the number of neurospheres (1.3- and 1.63-fold,respectively) that could be derived from the anterior lateral ventricles of adult mice. These results indicate that di-rhamnolipid stimulates proliferation of neural stem cells and increases their endogenous pools which may have therapeutic potential in managing neurodegenerative or neuropsychiatric disorders and promoting nervous tissue regeneration following injury.
View Publication
P. Gonzalez-Sanchez et al. ( 2017)
Frontiers in cellular neuroscience 11 363
Store-Operated Calcium Entry Is Required for mGluR-Dependent Long Term Depression in Cortical Neurons.
Store-operated calcium entry (SOCE) is a Calcium (Ca2+) influx pathway activated by depletion of intracellular stores that occurs in eukaryotic cells. In neurons,the presence and functions of SOCE are still in question. Here,we show evidences for the existence of SOCE in primary mouse cortical neurons. Endoplasmic reticulum (ER)-Ca2+ depletion using thapsigargin (Tg) triggered a maintained cytosolic Ca2+ increase,which rapidly returned to basal level in the presence of the SOCE blockers 2-Aminoethoxydiphenyl borate (2-APB) and YM-58483. Neural SOCE is also engaged by activation of metabotropic glutamate receptors (mGluRs) with (S)-3,5-dihydroxyphenylglycine (DHPG) (agonist of group I mGluRs),being an essential mechanism to maintain the mGluR-driven Ca2+ signal. Activation of group I of mGluRs triggers long-term depression (LTD) in many brain regions,but the underlying mechanism and,specifically,the necessity of Ca2+ increase in the postsynaptic neuron is controversial. In primary cortical neurons,we now show that the inhibition of Ca2+ influx through SOCE impaired DHPG-LTD,pointing out a key function of calcium and SOCE in synaptic plasticity.
View Publication
Ankam S et al. (JAN 2013)
Acta Biomaterialia 9 1 4535--45
Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage
Efficient derivation of neural cells from human embryonic stem cells (hESCs) remains an unmet need for the treatment of neurological disorders. The limiting factors for current methods include being labor-intensive,time-consuming and expensive. In this study,we hypothesize that the substrate topography,with optimal geometry and dimension,can modulate the neural fate of hESCs and enhance the efficiency of differentiation. A multi-architectural chip (MARC) containing fields of topographies varying in geometry and dimension was developed to facilitate high-throughput analysis of topography-induced neural differentiation in vitro. The hESCs were subjected to direct differentiation"�
View Publication
Young KM et al. (AUG 2007)
The Journal of neuroscience : the official journal of the Society for Neuroscience 27 31 8286--96
Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb.
We determined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium,including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex,contribute multipotent,self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ,respectively. Both populations contribute new (5-bromo-2'-deoxyuridine-labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However,calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE-derived stem cells. Thus,different SVZ stem cells have different embryonic origins,colonize different parts of the SVZ,and generate different neuronal progeny,suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future.
View Publication
Peng S et al. (DEC 2015)
Annals of clinical and translational neurology 2 12 1085--104
Suppression of agrin-22 production and synaptic dysfunction in Cln1 (-/-) mice.
OBJECTIVE Oxidative stress in the brain is highly prevalent in many neurodegenerative disorders including lysosomal storage disorders,in which neurodegeneration is a devastating manifestation. Despite intense studies,a precise mechanism linking oxidative stress to neuropathology in specific neurodegenerative diseases remains largely unclear. METHODS Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease caused by mutations in the ceroid lipofuscinosis neuronal-1 (CLN1) gene encoding palmitoyl-protein thioesterase-1. Previously,we reported that in the brain of Cln1 (-/-) mice,which mimic INCL,and in postmortem brain tissues from INCL patients,increased oxidative stress is readily detectable. We used molecular,biochemical,immunohistological,and electrophysiological analyses of brain tissues of Cln1 (-/-) mice to study the role(s) of oxidative stress in mediating neuropathology. RESULTS Our results show that in Cln1 (-/-) mice oxidative stress in the brain via upregulation of the transcription factor,CCAAT/enhancer-binding protein-δ,stimulated expression of serpina1,which is an inhibitor of a serine protease,neurotrypsin. Moreover,in the Cln1 (-/-) mice,suppression of neurotrypsin activity by serpina1 inhibited the cleavage of agrin (a large proteoglycan),which substantially reduced the production of agrin-22,essential for synaptic homeostasis. Direct whole-cell recordings at the nerve terminals of Cln1 (-/-) mice showed inhibition of Ca(2+) currents attesting to synaptic dysfunction. Treatment of these mice with a thioesterase-mimetic small molecule,N-tert (Butyl) hydroxylamine (NtBuHA),increased agrin-22 levels. INTERPRETATION Our findings provide insight into a novel pathway linking oxidative stress with synaptic pathology in Cln1 (-/-) mice and suggest that NtBuHA,which increased agrin-22 levels,may ameliorate synaptic dysfunction in this devastating neurodegenerative disease.
View Publication
Ogulur I et al. (MAY 2014)
International Immunopharmacology 20 1 101--109
Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma
New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies,the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study,we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity,and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated,characterized,labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane,epithelium,subepithelial smooth thickness and goblet cell hyperplasia,and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (P<0.001). Intravenous administration of mCB-MSC significantly reduced these histopathological changes in both distal and proximal airways (P<0.001). We showed that GFP-labeled MSCs were located in the lungs of OVA group 2weeks after intravenous induction. mCB-MSCs also significantly promoted Treg response in ovalbumin-treated mice (OVA+MSC group) (P<0.037). Our studies revealed that mCB-MSCs migrated to lung tissue and suppressed histopathological changes in murine model of asthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma.
View Publication
Wen Z et al. (NOV 2014)
Nature 515 7527 414--418
Synaptic dysregulation in a human iPS cell model of mental disorders
Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders,and /`a disease of synapses/' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies,little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare,multiply affected,large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and,furthermore,dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.
View Publication
Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model.
Adeno-associated virus (AAV) vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise,however,invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA) promoter and the neuron-specific enolase (NSE) promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns,although the NSE promoter yielded 100-fold lower expression in the abdomen (liver),with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes,neurons and endothelial cells,while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival,with the CBA promoter having higher efficacy. To our knowledge,this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.
View Publication
Bagci-Onder T et al. (JUN 2015)
Brain 138 6 1710--1721
Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells
Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study,we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging,we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next,we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain,we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective,potent and secretable variant of a TRAIL,S-TRAIL,and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore,the incorporation of pro-drug converting enzyme,herpes simplex virus thymidine kinase,into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.
View Publication
Badr CE et al. (MAY 2013)
JNCI: Journal of the National Cancer Institute 105 9 643--653
Targeting Cancer Cells With the Natural Compound Obtusaquinone
BACKGROUND Tumor cells present high levels of oxidative stress. Cancer therapeutics exploiting such biochemical changes by increasing reactive oxygen species (ROS) production or decreasing intracellular ROS scavengers could provide a powerful treatment strategy. METHODS To test the effect of our compound,obtusaquinone (OBT),we used several cell viability assays on seven different glioblastoma (GBM) cell lines and primary cells and on 12 different cell lines representing various cancer types in culture as well as on subcutaneous (n = 7 mice per group) and two intracranial GBM (n = 6-8 mice per group) and breast cancer (n = 6 mice per group) tumor models in vivo. Immunoblotting,immunostaining,flow cytometry,and biochemical assays were used to investigate the OBT mechanism of action. Histopathological analysis (n = 2 mice per group) and blood chemistry (n = 2 mice per group) were used to test for any compound-related toxicity. Statistical tests were two-sided. RESULTS OBT induced rapid increase in intracellular ROS levels,downregulation of cellular glutathione levels and increase in its oxidized form,and activation of cellular stress pathways and DNA damage,subsequently leading to apoptosis. Oxidative stress is believed to be the main mechanism through which this compounds targets cancer cells. OBT was well tolerated in mice,slowed tumor growth,and statistically prolonged survival in GBM tumor models. The ratio of median survival in U251 intracranial model in OBT vs control was 1.367 (95% confidence interval [CI] of ratio = 1.031 to 1.367,P = .008). Tumor growth inhibition was also observed in a mouse breast cancer model (average tumor volume per mouse,OBT vs control: 36.3 vs 200.4mm(3),difference = 164.1mm(3),95% CI =72.6 to 255.6mm(3),P = .005). CONCLUSIONS Given its properties and efficacy in cancer killing,our results suggest that OBT is a promising cancer therapeutic.
View Publication