Darce JR et al. (DEC 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 11 7276--86
Regulated expression of BAFF-binding receptors during human B cell differentiation.
BAFF plays a central role in B-lineage cell biology; however,the regulation of BAFF-binding receptor (BBR) expression during B cell activation and differentiation is not completely understood. In this study,we provide a comprehensive ex vivo analysis of BBRs in human B-lineage cells at various stages of maturation,as well as describe the events that drive and regulate receptor expression. Our data reveal that B-lineage cells ranging from naive to plasma cells (PCs),excluding bone marrow PCs,express BAFF-R uniformly. In contrast,only tonsillar memory B cells (MB) and PCs,from both tonsil and bone marrow tissues,express BCMA. Furthermore,we show that TACI is expressed by MB cells and PCs,as well as a subpopulation of activated CD27(neg) B cells. In this regard,we demonstrate that TACI is inducible early upon B cell activation and this is independent of B cell turnover. In addition,we found that TACI expression requires activation of the ERK1/2 pathway,since its expression was blocked by ERK1/2-specific inhibitors. Expression of BAFF-R and B cell maturation Ag (BCMA) is also highly regulated and we demonstrate that BCMA expression is only acquired in MB cells and in a manner accompanied by loss of BAFF-R expression. This inverse expression coincides with MB cell differentiation into Ig-secreting cells (ISC),since blocking differentiation inhibited both induction of BCMA expression and loss of BAFF-R. Collectively,our data suggest that the BBR profile may serve as a footprint of the activation history and stage of differentiation of normal human B cells.
View Publication
Barragá et al. (DEC 2006)
Journal of leukocyte biology 80 6 1473--9
Regulation of Akt/PKB by phosphatidylinositol 3-kinase-dependent and -independent pathways in B-cell chronic lymphocytic leukemia cells: role of protein kinase Cbeta.
Apoptosis of B cell chronic lymphocytic leukemia (B-CLL) cells is regulated by the PI-3K-Akt pathway. In the present work,we have analyzed the mechanisms of Akt phosphorylation in B-CLL cells. Freshly isolated cells present basal Akt phosphorylation,which is PI-3K-dependent,as incubation with the PI-3K inhibitor LY294002 decreased Ser-473 and Thr-308 phosphorylation in most samples analyzed (seven out of 10). In three out of 10 cases,inhibition of protein kinase C (PKC) inhibited basal Akt phosphorylation. Stromal cell-derived factor-1alpha,IL-4,and B cell receptor activation induced PI-3K-dependent Akt phosphorylation. PMA induced the phosphorylation of Akt at Ser-473 and Thr-308 and the phosphorylation of Akt substrates,independently of PI-3K in B-CLL cells. In contrast,PKC-mediated phosphorylation of Akt was PI-3K-dependent in normal B cells. Finally,a specific inhibitor of PKCbeta blocked the phosphorylation and activation of Akt by PMA in B-CLL cells. Taken together,these results suggest a model in which Akt could be activated by two different pathways (PI-3K and PKCbeta) in B-CLL cells.
View Publication
Tang Y et al. (SEP 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 5 2815--23
Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However,the factors that regulate the magnitude of ADCC are incompletely understood. In this study,we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M,and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting,a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.
View Publication
Chen Y et al. (JUL 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 2 1346--59
Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis.
Although natural Abs (NAbs) are present from birth,little is known about what drives their selection and whether they have housekeeping functions. The prototypic T15-NAb,first identified because of its protective role in infection,is representative of a special type of NAb response that specifically recognizes and forms complexes with apoptotic cells and which promotes cell-corpse engulfment by phagocytes. We now show that this T15-NAb IgM-mediated clearance process is dependent on the recruitment of C1q and mannose-binding lectin,which have known immune modulatory activities that also provide eat me" signals for enhancing phagocytosis. Further investigation revealed that the addition of T15-NAb significantly suppressed in vitro LPS-induced TNF-alpha and IL-6 secretion by the macrophage-like cell line�
View Publication
Popovic R et al. (APR 2009)
Blood 113 14 3314--22
Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here,we show that MLL normally regulates expression of mir-196b,a hematopoietic microRNA located within the HoxA cluster,in a pattern similar to that of the surrounding 5' Hox genes,Hoxa9 and Hoxa10,during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage,mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells. Leukemogenic MLL fusion proteins cause overexpression of mir-196b,while treatment of MLL-AF9 transformed bone marrow cells with mir-196-specific antagomir abrogates their replating potential in methylcellulose. This demonstrates that mir-196b function is necessary for MLL fusion-mediated immortalization. Furthermore,overexpression of mir-196b was found specifically in patients with MLL associated leukemias as determined from analysis of 55 primary leukemia samples. Overexpression of mir-196b in bone marrow progenitor cells leads to increased proliferative capacity and survival,as well as a partial block in differentiation. Our results suggest a mechanism whereby increased expression of mir-196b by MLL fusion proteins significantly contributes to leukemia development.
View Publication
Rouhiainen A et al. (AUG 2004)
Blood 104 4 1174--82
Regulation of monocyte migration by amphoterin (HMGB1).
Amphoterin (HMGB1) is a 30-kD heparin-binding protein involved in process extension and migration of cells by a mechanism involving the receptor for advanced glycation end products (RAGE). High levels of amphoterin are released to serum during septic shock. We have studied the expression of amphoterin in monocytes and the role of amphoterin and RAGE in monocyte transendothelial migration. Un-activated monocytes in suspension did not reveal amphoterin on their surface,but adherent monocytes exported amphoterin to the cell surface. Immunohistochemical staining of arterial thrombi in vivo revealed amphoterin in mononuclear cells and in surrounding extracellular matrix. Amphoterin was secreted from phorbol ester and interferon-gamma (IFN-gamma)-activated macrophages,and the secretion was inhibited by blocking the adenosine 5'-triphosphate (ATP)-binding cassette transporter-1,a member of the multidrug resistance protein family. Amphoterin was specifically adhesive for monocytes in peripheral blood leukocyte adhesion assay. Adhesion caused an extensive spreading of cells,which was inhibited by the dominant-negative RAGE receptor (soluble ectodomain of RAGE),and adhesion up-regulated chromogranin expression in monocytes,also suggesting a RAGE-dependent interaction. Monocyte transendothelial migration was efficiently inhibited by anti-amphoterin and anti-RAGE antibodies and by the soluble RAGE. We suggest that amphoterin is an autocrine/paracrine regulator of monocyte invasion through the endothelium.
View Publication
Kortylewski M et al. (FEB 2009)
Cancer cell 15 2 114--23
Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment.
Interactions between tumor and immune cells either enhance or inhibit cancer progression. We show here that Stat3 signaling within the tumor microenvironment induces a procarcinogenic cytokine,IL-23,while inhibiting a central anticarcinogenic cytokine,IL-12,thereby shifting the balance of tumor immunity toward carcinogenesis. Stat3 induces expression of IL-23,which is mainly produced by tumor-associated macrophages,via direct transcriptional activation of the IL-23/p19 gene. Furthermore,Stat3 inhibits NF-kappaB/c-Rel-dependent IL-12/p35 gene expression in tumor-associated dendritic cells. Tumor-associated regulatory T cells (Tregs) express IL-23 receptor,which activates Stat3 in this cell type,leading to upregulation of the Treg-specific transcription factor Foxp3 and the immunosuppressive cytokine IL-10. These results demonstrate that Stat3 promotes IL-23-mediated procarcinogenic immune responses while inhibiting IL-12-dependent antitumor immunity.
View Publication
Engelhardt BG et al. (MAR 2011)
Bone marrow transplantation 46 3 436--42
Regulatory T cell expression of CLA or α(4)β(7) and skin or gut acute GVHD outcomes.
Regulatory T cells (Tregs) are a suppressive subset of CD4(+) T lymphocytes implicated in the prevention of acute GVHD (aGVHD) after allo-SCT (ASCT). To determine whether increased frequency of Tregs with a skin-homing (cutaneous lymphocyte Ag,CLA(+)) or a gut-homing (α(4)β(7)(+)) phenotype is associated with reduced risk of skin or gut aGVHD,respectively,we quantified circulating CLA(+) or α(4)β(7)(+) on Tregs at the time of neutrophil engraftment in 43 patients undergoing ASCT. Increased CLA(+) Tregs at engraftment was associated with the prevention of skin aGVHD (2.6 vs 1.7%; P=0.038 (no skin aGVHD vs skin aGVHD)),and increased frequencies of CLA(+) and α(4)β(7)(+) Tregs were negatively correlated with severity of skin aGVHD (odds ratio (OR),0.67; 95% confidence interval (CI),0.46-0.98; P=0.041) or gut aGVHD (OR,0.93; 95% CI,0.88-0.99; P=0.031),respectively. This initial report suggests that Treg tissue-homing subsets help to regulate organ-specific risk and severity of aGVHD after human ASCT. These results need to be validated in a larger,multicenter cohort.
View Publication
Wang X-N et al. (JUL 2009)
Transplantation 88 2 188--97
Regulatory T-cell suppression of CD8+ T-cell-mediated graft-versus-host reaction requires their presence during priming.
BACKGROUND: Despite the promising therapeutic potential of regulatory T cells (Treg) in animal studies of graft-versus-host disease (GVHD),little is known about their effect on human GVHD. Whether Treg are capable of ameliorating GVHD tissue damage has never been demonstrated in humans. It is also unknown whether Treg modulation of GVH histopathologic damage relies on their presence during effector T-cell priming,or whether allogeneic Treg are safe to use clinically. METHODS: To address these questions,we used an in vitro human skin explant GVHD model,which mimics the physiopathology of GVHD. First,donor"-derived CD8 T cells were stimulated with human leukocyte antigen-unmatched "recipient" dendritic cells (priming phase)�
View Publication
Jorissen W et al. (FEB 2017)
Scientific reports 7 43410
Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL.
Lipoproteins modulate innate and adaptive immune responses. In the chronic inflammatory disease multiple sclerosis (MS),reports on lipoprotein level alterations are inconsistent and it is unclear whether lipoprotein function is affected. Using nuclear magnetic resonance (NMR) spectroscopy,we analysed the lipoprotein profile of relapsing-remitting (RR) MS patients,progressive MS patients and healthy controls (HC). We observed smaller LDL in RRMS patients compared to healthy controls and to progressive MS patients. Furthermore,low-BMI (BMI ≤ 23 kg/m(2)) RRMS patients show increased levels of small HDL (sHDL),accompanied by larger,triglyceride (TG)-rich VLDL,and a higher lipoprotein insulin resistance (LP-IR) index. These alterations coincide with a reduced serum capacity to accept cholesterol via ATP-binding cassette (ABC) transporter G1,an impaired ability of HDL3 to suppress inflammatory activity of human monocytes,and modifications of HDL3's main protein component ApoA-I. In summary,lipoprotein levels and function are altered in RRMS patients,especially in low-BMI patients,which may contribute to disease progression in these patients.
View Publication
Krummen M et al. (JUL 2010)
Journal of leukocyte biology 88 1 189--99
Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy.
Recently,it has been shown that certain combinations of TLR ligands act in synergy to induce the release of IL-12 by DCs. In this study,we sought to define the critical parameters underlying TLR synergy. Our data show that TLR ligands act synergistically if MyD88- and TRIF-dependent ligands are combined. TLR4 uses both of these adaptor molecules,thus activation via TLR4 proved to be a synergistic event on its own. TLR synergy did not affect all aspects of DC activation but enhanced primarily the release of certain cytokines,particularly IL-12,whereas the expression of costimulatory molecules remained unchanged. Consequently,synergistic activation of DC did not affect their ability to induce T cell proliferation but resulted in T(H)1-biased responses in vitro and in vivo. Furthermore,we examined the impact of TLR ligand combinations on primary DC in vitro but observed only modest effects with a combination of CpG + Poly (I:C). However,noticeable synergy in terms of IL-12 production by DCs was detectable in vivo after systemic administration of CpG + Poly (I:C). Finally,we show that synergy is partially dependent on IFNAR signaling but does not require the release of IFNs to the enviroment,suggesting an autocrine action of type I IFNs.
View Publication
Fritsch G et al. (AUG 2016)
Vox sanguinis 111 2 187--96
Relevance of flow cytometric enumeration of post-thaw leucocytes: influence of temperature during cell staining on viable cell recovery.
BACKGROUND AND OBJECTIVES Our post-thaw cell recovery rates differed substantially in interlaboratory comparisons of identical samples,potentially due to different temperatures during cell staining. MATERIALS AND METHODS Viable CD34(+) cells and leucocyte (WBC) subtypes were quantified by multiparameter single-platform flow cytometry in leucapheresis products collected from 30 adult lymphoma and myeloma patients,and from 10 paediatric patients. After thawing,cells were prepared for analysis within 30 min between thawing and acquisition,at either 4°C or at room temperature. RESULTS For cell products cryopreserved in conventional freezing medium (10% final DMSO),viable cell recovery was clearly lower after staining at 4°C than at RT. Of all WBC subtypes analysed,CD4(+) T cells showed the lowest median recovery of 4% (4°C) vs. 25% (RT),followed by CD3,CD34 and CD8 cells. The recovery was highest for CD3γδ cells with 44% (4°C) vs. 71% (RT). In the 10 samples cryopreserved in synthetic freezing medium (5% final DMSO),median recovery rates were 89% for viable CD34 (both at 4°C and RT) and 79% (4°C) vs 68% (RT) for WBC. CONCLUSIONS The post-thaw environment and,potentially,the cryoprotectant impact the outcome of cell enumeration,and results from the analysis tube may not be representative of the cells infused into a patient.
View Publication