Leung CG et al. (JUL 2007)
The Journal of experimental medicine 204 7 1603--11
Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells.
Survivin,which is the smallest member of the inhibitor of apoptosis protein (IAP) family,is a chromosomal passenger protein that mediates the spindle assembly checkpoint and cytokinesis,and also functions as an inhibitor of apoptosis. Frequently overexpressed in human cancers and not expressed in most adult tissues,survivin has been proposed as an attractive target for anticancer therapies and,in some cases,has even been touted as a cancer-specific gene. Survivin is,however,expressed in proliferating adult cells,including human hematopoietic stem cells,T-lymphocytes,and erythroid cells throughout their maturation. Therefore,it is unclear how survivin-targeted anticancer therapies would impact steady-state blood development. To address this question,we used a conditional gene-targeting strategy and abolished survivin expression from the hematopoietic compartment of mice. We show that inducible deletion of survivin leads to ablation of the bone marrow,with widespread loss of hematopoietic progenitors and rapid mortality. Surprisingly,heterozygous deletion of survivin causes defects in erythropoiesis in a subset of the animals,with a dramatic reduction in enucleated erythrocytes and the presence of immature megaloblastic erythroblasts. Our studies demonstrate that survivin is essential for steady-state hematopoiesis and survival of the adult,and further,that a high level of survivin expression is critical for proper erythroid differentiation.
View Publication
Lee S-K et al. (MAR 2015)
EBioMedicine 2 3 225--33
Response of Neutrophils to Extracellular Haemoglobin and LTA in Human Blood System.
BACKGROUND Haemolytic infection lyses red blood cells,releasing haemoglobin (Hb) into the plasma. Although recent studies showed that immune cells recognize redox-active cytotoxic extracellular Hb (metHb) bound to pathogen-associated molecular patterns (PAMPs),currently available information is limited to experiments performed in defined conditions using single cell lines. Therefore,a systemic approach targeting primary whole blood cells is required to better understand the cellular immune defence against metHb and PAMPs,when under a haemolytic infection. METHODS We investigated how human white blood cells,including neutrophils,respond to metHb and lipoteichoic acid (LTA) by measuring reactive oxygen species (ROS),signalling mediators (ERK and p38),NF-κB,cytokines,elastase secretion and cell activation markers. FINDINGS metHb activates NF-κB in TLR2-expressing HEK293 cells but not in normal or TLR9-expressing HEK293 cells. Treatment of isolated neutrophils with metHb increased production of ROS and expressions of IL-8,TNFα,and CD11b,which were further enhanced by metHb + LTA complex. While LTA stimulated the survival of neutrophils,it caused apoptotic cell death when complexed with metHb. The activation of neutrophils by metHb + LTA was subdued by the presence of other types of white blood cells. INTERPRETATION metHb and metHb + LTA complex are ligands of TLR2,inducing an unconventional TLR signalling pathway. Neutrophils are a highly sensitive cell type to metHb + LTA complex. During a haemolytic infection,white blood cells in the vicinity crosstalk to modulate neutrophil TLR-signalling induced by metHb and LTA.
View Publication
Bystrom J et al. (MAY 2017)
Clinical reviews in allergy & immunology
Response to Treatment with TNFα Inhibitors in Rheumatoid Arthritis Is Associated with High Levels of GM-CSF and GM-CSF(+) T Lymphocytes.
Biologic TNFα inhibitors are a mainstay treatment option for patients with rheumatoid arthritis (RA) refractory to other treatment options. However,many patients either do not respond or relapse after initially responding to these agents. This study was carried out to identify biomarkers that can distinguish responder from non-responder patients before the initiation of treatment. The level of cytokines in plasma and those produced by ex vivo T cells,B cells and monocytes in 97 RA patients treated with biologic TNFα inhibitors was measured before treatment and after 1 and 3 months of treatment by multiplex analyses. The frequency of T cell subsets and intracellular cytokines were determined by flow cytometry. The results reveal that pre-treatment,T cells from patients who went on to respond to treatment with biologic anti-TNFα agents produced significantly more GM-CSF than non-responder patients. Furthermore,immune cells from responder patients produced higher levels of IL-1β,TNFα and IL-6. Cytokine profiling in the blood of patients confirmed the association between high levels of GM-CSF and responsiveness to biologic anti-TNFα agents. Thus,high blood levels of GM-CSF pre-treatment had a positive predictive value of 87.5% (61.6 to 98.5% at 95% CI) in treated RA patients. The study also shows that cells from most anti-TNFα responder patients in the current cohort produced higher levels of GM-CSF and TNFα pre-treatment than non-responder patients. Findings from the current study and our previous observations that non-responsiveness to anti-TNFα is associated with high IL-17 levels suggest that the disease in responder and non-responder RA patients is likely to be driven/sustained by different inflammatory pathways. The use of biomarker signatures of distinct pro-inflammatory pathways could lead to evidence-based prescription of the most appropriate biological therapies for different RA patients.
View Publication
Sá et al. (JUL 2011)
Blood 118 4 955--64
Restriction of HIV-1 replication in macrophages and CD4+ T cells from HIV controllers.
How HIV controllers (HICs) maintain undetectable viremia without therapy is unknown. The strong CD8(+) T-cell HIV suppressive capacity found in many,but not all,HICs may contribute to long-lasting viral control. However,other earlier defense mechanisms may be involved. Here,we examined intrinsic HIC cell resistance to HIV-1 infection. After in vitro challenge,monocyte-derived macrophages and anti-CD3-activated CD4(+) T cells from HICs showed low HIV-1 susceptibility. CD4 T-cell resistance was independent of HIV-1 coreceptors and affected also SIVmac infection. CD4(+) T cells from HICs expressed ex vivo higher levels of p21(Waf1/Cip1),which has been involved in the control of HIV-1 replication,than cells from control subjects. However,HIV restriction in anti-CD3-activated CD4(+) T cells and macrophages was not associated with p21 expression. Restriction inhibited accumulation of reverse transcripts,leading to reduction of HIV-1 integrated proviruses. The block could be overcome by high viral inocula,suggesting the action of a saturable mechanism. Importantly,cell-associated HIV-1 DNA load was extremely low in HICs and correlated with CD4(+) T-cell permissiveness to infection. These results point to a contribution of intrinsic cell resistance to the control of infection and the containment of viral reservoir in HICs.
View Publication
Matsumoto SC et al. (JAN 2006)
The FASEB Journal 20 3 550--2
Retinal dysfunction in patients with chronic Chagas' disease is associated to anti-Trypanosoma cruzi antibodies that cross-react with rhodopsin
To investigate retinal involvement in chronic Chagas' disease,we performed electroretinography and retinal fluorescein angiography studies in chagasic patients. Our results demonstrated a dissociated electrophysiological response characterized by both an abnormal reduction of the electroretinographic b-wave amplitude and a delayed latency,under the dark-adaptated condition. These alterations are compatible with a selective dysfunction of the rods. Antibodies raised against Trypanosoma cruzi that also interact with beta1-adrenergic receptor blocked light stimulation of cGMP-phosphodiesterase in bovine rod membranes. The specificity from the antibody-rhodopsin interaction was confirmed by Western blot analysis and antigenic competition experiments. Our results suggest an immunomediated rhodopsin blockade. T. cruzi infection probably induces an autoimmune response against rhodopsin in the chronic phase of Chagas' disease through a molecular mimicry mechanism similar to that described previously on cardiac human beta1-adrenergic and M2-cholinergic receptors,all related to the same subfamily of G-protein-coupled receptors.
View Publication
Aoukaty A and Tan R (APR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 8 4551--8
Role for glycogen synthase kinase-3 in NK cell cytotoxicity and X-linked lymphoproliferative disease.
NK cells from individuals with X-linked lymphoproliferative (XLP) disease exhibit functional defects when stimulated through the NK receptor,2B4 (CD244). These defects are likely a consequence of aberrant intracellular signaling initiated by mutations of the adaptor molecule SLAM-associated protein. In this report,we show that NK cells from individuals with XLP but not healthy individuals fail to phosphorylate and thereby inactivate glycogen synthase kinase-3 (GSK-3) following 2B4 stimulation. Lack of GSK-3 phosphorylation prevented the accumulation of the transcriptional coactivator beta-catenin in the cytoplasm and its subsequent translocation to the nucleus. Potential signaling pathways leading from 2B4 stimulation to GSK-3 phosphorylation were also investigated. Ligation of 2B4 resulted in the phosphorylation of the guanine nucleotide exchange factor,Vav-1,and subsequent activation of the GTP-binding protein Rac-1 (but not Ras) and the serine-threonine kinase Raf-1 in healthy but not XLP-derived NK cells. In addition,the activity of MEK-2 (but not MEK-1) was up-regulated,and Erk1/2 was phosphorylated in normal NK cells but not those from an individual with XLP suggesting that these proteins relay SLAM-associated protein-dependent signals from 2B4. Finally,inactivation of GSK-3 using a specific inhibitor of GSK-3beta increased the cytotoxicity and cytokine secretion of both healthy and XLP NK cells. These data indicate that the signaling of 2B4 in NK cells is mediated by GSK-3 and beta-catenin,possibly through a signal transduction pathway that involves Vav-1,Rac-1,Raf-1,MEK-2,and Erk1/2 and that this pathway is aberrant in individuals with XLP.
View Publication
Jin Q et al. (SEP 2011)
Virology 417 2 449--56
Role for the conserved N-terminal cysteines in the anti-chemokine activities by the chemokine-like protein MC148R1 encoded by Molluscum contagiosum virus.
Molluscum contagiosum poxvirus (MCV) type 1 and type 2 encode two chemokine-like proteins MC148R1 and MC148R2. It is believed that MC148R proteins function by blocking the inflammatory response. However,the mechanism of the proposed biological activities of MC148R proteins and the role of the additional C-terminal cysteines that do not exist in other chemokines are not understood. Here,we demonstrated in two different assay systems that His-tagged MC148R1 displaces the interaction between CXCL12α and CXCR4. The N-terminal cysteines but not the additional C-terminal cysteines modulate this displacement. His-tagged MC148R1 blocked both CXCL12α-mediated and MIP-1α-mediated chemotaxis. In contrast,MC148R2 blocked MIP-1α-mediated but not CXCL12α-mediated chemotaxis. Immunoprecipitation by antibodies to MC148R1 or CXCL12α followed by immunoblotting and detection by antibodies to the other protein demonstrated physical interaction of His-tagged CXCL12α and His-tagged MC148R1. Interaction with chemokines might mask the receptor interaction site resulting in decreased binding and impairment of the biological activities.
View Publication
S. Fan et al. ( 2019)
NPJ vaccines 4 14
Role of innate lymphoid cells and dendritic cells in intradermal immunization of the enterovirus antigen.
Enterovirus type 71 (EV71) and coxsackievirus A 16 (CA16) are the major pathogens of human hand,foot,and mouth disease (HFMD). In our previous study,intramuscular immunization with the inactivated EV71 vaccine elicited effective immunity,while immunization with the inactivated CA16 vaccine did not. In this report,we focused on innate immune responses elicited by inactivated EV71 and CA16 antigens administered intradermally or intramuscularly. The distributions of the EV71 and CA16 antigens administered intradermally or intramuscularly were not obviously different,but the antigens were detected for a shorter period of time when administered intradermally. The expression levels of NF-kappaB pathway signaling molecules,which were identified as being capable of activating DCs,ILCs,and T cells,were higher in the intradermal group than in the intramuscular group. Antibodies for the EV71 and CA16 antigens colocalized with ILCs and DCs in skin and muscle tissues under fluorescence microscopy. Interestingly,ILC colocalization decreased over time,while DC colocalization increased over time. ELISpot analysis showed that coordination between DCs and ILCs contributed to successful adaptive immunity against vaccine antigens in the skin. EV71 and/or CA16 antigen immunization via the intradermal route was more capable of significantly increasing neutralizing antibody titers and activating specific T cell responses than immunization via the intramuscular route. Furthermore,neonatal mice born to mothers immunized with the EV71 and CA16 antigens were 100{\%} protected against wild-type EV71 or CA16 viral challenge. Together,our results provide new insights into the development of vaccines for HFMD.
View Publication
Zhang J et al. (OCT 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 8 5350--7
Role of TL1A in the pathogenesis of rheumatoid arthritis.
TNF-like ligand 1A (TL1A),a member of the TNF superfamily,is the ligand of DR3 and DcR3. Several types of cells,such as endothelial cells,monocytes/macrophages,dendritic cells,and CD4 and CD8 T cells,are capable of producing this cytokine. In present study,we demonstrated that TL1A aggravated collagen-induced arthritis in mice. It increased collagen-induced arthritis penetrance and clinical scores as well as the severity of the pathological findings. TL1A administration led to the occurrence of multiple enlarged germinal centers in the spleen,and it boosted serum anti-collagen Ab titers in vivo. In vitro,TL1A augmented TNF-alpha production by T cells upon TCR ligation,and it greatly enhanced Th17 differentiation and IL-17 production. We further showed that human rheumatoid arthritis (RA) synovial fluids had elevated TL1A titers,and human chrondrocytes and synovial fibroblasts were capable of secreting TL1A upon TNF-alpha or IL-1beta stimulation. Taken together,these data suggest that TL1A secretion in lymphoid organs might contribute to RA initiation by promoting autoantibody production,and TL1A secretion stimulated by inflammatory cytokines in RA joints might be a part of a vicious circle that aggravates RA pathogenesis.
View Publication
Foley JF et al. (APR 2005)
Journal of immunology (Baltimore,Md. : 1950) 174 8 4892--900
Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes.
We investigated roles for chemoattractants in dissemination of HIV-1 by examining the induction of T cell-active chemokines in HIV-1-infected human monocyte-derived macrophages and dendritic cells. Of the 12 chemokines analyzed,mRNAs for two,CXCL10 and CXCL11,ligands for the chemokine receptor CXCR3,were up-regulated in both cell types upon infection by HIV-1. Induction of these chemokine genes in infected cultures was dependent on both viral entry and reverse transcriptase activity,but not on the HIV-1 envelope glycoprotein. Conditioned medium from infected cells was chemotactic for freshly isolated human CD4+ T cells,and chemotaxis was abolished by pretreatment with an Ab against CXCR3. A lymph node from an HIV-1-infected individual expressed CXCL10 and CXCL11 mRNAs in the paracortex,including venules,as detected by in situ hybridization,whereas neither mRNA was detected after highly active antiretroviral therapy. Because CCR5 on CD4+ T cells is found predominantly on cells that also express CXCR3,these data implicate CXCL10 and CXCL11 in the recruitment of susceptible T cells to HIV-1-infected lymph nodes,macrophages,and dendritic cells. This recruitment might enhance the sequestration of T cells in infected lymphoid organs and the spread of infection between cells,contributing to the immunopathology of AIDS.
View Publication
Cammenga J et al. (JAN 2007)
Cancer research 67 2 537--45
Mutations in the RUNX1 gene are found at high frequencies in minimally differentiated acute myelogenous leukemia. In addition to null mutations,many of the mutations generate Runx1 DNA-binding (RDB) mutants. To determine if these mutants antagonize wild-type protein activity,cDNAs were transduced into murine bone marrow or human cord blood cells using retroviral vectors. Significantly,the RDB mutants did not act in a transdominant fashion in vivo to disrupt Runx1 activity in either T-cell or platelet development,which are highly sensitive to Runx1 dosage. However,RDB mutant expression impaired expansion and differentiation of the erythroid compartment in which Runx1 expression is normally down-regulated,showing that a RDB-independent function is incompatible with erythroid differentiation. Significantly,both bone marrow progenitors expressing RDB mutants or deficient for Runx1 showed increased replating efficiencies in vitro,accompanied by the accumulation of myeloblasts and dysplastic progenitors,but the effect was more pronounced in RDB cultures. Disruption of the interface that binds CBFbeta,an important cofactor of Runx1,did not impair RDB mutant replating activity,arguing against inactivation of Runx1 function by CBFbeta sequestration. We propose that RDB mutants antagonize Runx1 function in early progenitors by disrupting a critical balance between DNA-binding-independent and DNA-binding-dependent signaling.
View Publication
T. Ulas et al. (MAY 2017)
Nature immunology
S100-alarmin-induced innate immune programming protects newborn infants from sepsis.
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however,the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic,epigenetic and immunological approaches,we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide,but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates,shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective,transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
View Publication