Bacigalupo A et al. (JUL 2005)
Experimental hematology 33 7 819--27
T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia.
OBJECTIVE: To compare the suppressive effect of mesenchymal stem cells (MSC),derived from normal individuals or severe aplastic anemia patients (SAA),on T-cell activation. PATIENTS AND METHODS: We studied bone marrow MSC from 19 healthy donors and 23 SAA patients in different phases of the disease: at diagnosis (n = 3),following immunosuppressive therapy (IS) (n = 16),or after a bone marrow transplant (BMT) (n = 4). MSC were tested for T-cell suppression in the following assays: mixed lymphocyte reaction (MLR),phytohemaglutinin (PHA)-primed cultures,activation surface markers,gamma-IFN production,hematopoietic colony formation (CFC),production of cyclic ADP-ribose (cADPR). RESULTS: The abnormalities of SAA MSC included: 1) significantly lower suppression of T-cell proliferation induced by alloantigens (p = 0.009) or PHA (p = 0.006); 2) impaired capacity to suppress CD38 expression on PHA-primed T cells (p = 0.001); 3) impaired ability to suppress gamma-IFN production in PHA cultures,resulting in an 11-fold higher gamma-IFN concentration; 4) no preventive effect on T cell-mediated inhibition of CFC; and 5) significantly reduced (p = 0.009) production of cADPR,a universal calcium mobilizer. MSC-mediated suppression of PHA-induced T-cell proliferation was restored to control levels in 3 of 4 patients post-BMT. CONCLUSION: The ability of MSC to downregulate T-cell priming,proliferation,and cytokine release is deficient in patients with SAA,persists indefinitely after immunosuppressive therapy,but seems to be restored after BMT. Whether these abnormalities are relevant to the pathogenesis of aplastic anemia remains to be determined.
View Publication
Costantini JL et al. (NOV 2009)
Blood 114 21 4703--12
TAPP2 links phosphoinositide 3-kinase signaling to B-cell adhesion through interaction with the cytoskeletal protein utrophin: expression of a novel cell adhesion-promoting complex in B-cell leukemia.
Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation,the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells,including proteins involved in cytoskeletal rearrangement,signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2,syntrophin,and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient,with significantly higher expression in the more aggressive disease subset identified by zeta-chain-associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion,a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin,whereas PH domain-mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin,or treatment with PI3K inhibitors,significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.
View Publication
Bishop MR et al. (SEP 2004)
British journal of haematology 126 6 837--43
Mixed chimaerism and graft rejection are higher after reduced-intensity allogeneic stem cell transplantation (RIST) with T-cell depleted (TCD) allografts. As host immune status before RIST affects engraftment,we hypothesized that targeted depletion of host lymphocytes prior to RIST would abrogate graft rejection and promote donor chimaerism. Lymphocyte-depleting chemotherapy was administered at conventional doses to subjects prior to RIST with the intent of decreasing CD4(+) counts to textless0.05 x 10(9)cells/l. Subjects (n = 18) then received reduced-intensity conditioning followed by ex vivo TCD human leucocyte antigen-matched sibling allografts. All evaluable patients (n = 17) were engrafted; there were no late graft failures. At day +28 post-RIST,12 patients showed complete donor chimaerism. Mixed chimaerism in the remaining five patients was associated with higher numbers of circulating host CD3(+) cells (P = 0.0032) after lymphocyte-depleting chemotherapy and was preferentially observed in T lymphoid rather than myeloid cells. Full donor chimaerism was achieved in all patients after planned donor lymphocyte infusions. These data reflect the importance of host immune status prior to RIST and suggest that targeted host lymphocyte depletion facilitates the engraftment of TCD allografts. Targeted lymphocyte depletion may permit an individualized approach to conditioning based on host immune status prior to RIST.
View Publication
Frelin C et al. (JAN 2005)
Blood 105 2 804--11
Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells.
Acute myeloid leukemia (AML) cells are characterized by a constitutive and abnormal activation of the nuclear factor-kappaB (NF-kappaB) transcription factor. This study,conducted in vitro on 18 patients,shows that targeting the IKB kinase 2 (IKK2) kinase with the specific pharmacologic inhibitor AS602868 to block NF-kappaB activation led to apoptosis of human primary AML cells. Moreover,AS602868 potentiated the apoptotic response induced by the current chemotherapeutic drugs doxorubicin,cytarabine,or etoposide (VP16). AS602868-induced cell death was associated with rupture of the mitochondrial transmembrane potential and activation of cellular caspases. NF-kappaB inhibition did not affect normal CD34+ hematopoietic precursors,suggesting that it could represent a new adjuvant strategy for AML treatment.
View Publication
Voo KS et al. (JUL 2014)
The Journal of Immunology 193 2 627--34
Targeting of TLRs inhibits CD4+ regulatory T cell function and activates lymphocytes in human peripheral blood mononuclear cells.
Accumulating evidence suggests elements within tumors induce exhaustion of effector T cells and infiltration of immunosuppressive regulatory T cells (Tregs),thus preventing the development of durable antitumor immunity. Therefore,the discovery of agents that simultaneously block Treg suppressive function and reinvigorate effector function of lymphocytes is key to the development of effective cancer immunotherapy. Previous studies have shown that TLR ligands (TLRLs) could modulate the function of these T cell targets; however,those studies relied on cell-free or accessory cell-based assay systems that do not accurately reflect in vivo responses. In contrast,we used a human PBMC-based proliferation assay system to simultaneously monitor the effect of TLRLs on T cells (CD4(+),CD8(+),Tregs),B cells,and NK cells,which gave different and even conflicting results. We found that the TLR7/8L:CL097 could simultaneously activate CD8(+) T cells,B cells,and NK cells plus block Treg suppression of T cells and B cells. The TLRLs TLR1/2L:Pam3CSK4,TLR5L:flagellin,TLR4L:LPS,and TLR8/7L:CL075 also blocked Treg suppression of CD4(+) or CD8(+) T cell proliferation,but not B cell proliferation. Besides CL097,TLR2L:PGN,CL075,and TLR9L:CpG-A,CpG-B,and CpG-C) were strong activators of NK cells. Importantly,we found that Pam3CSK4 could: 1) activate CD4(+) T cell proliferation,2) inhibit the expansion of IL-10(+) naturally occurring FOXP3(+) Tregs and induction of IL-10(+) CD4(+) Tregs (IL-10-producing type 1 Treg),and 3) block naturally occurring FOXP3(+) Tregs suppressive function. Our results suggest these agents could serve as adjuvants to enhance the efficacy of current immunotherapeutic strategies in cancer patients.
View Publication
Ranga U et al. (MAR 2004)
Journal of virology 78 5 2586--90
Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine.
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain,and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions,we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these,cysteine (at position 31) was highly (textgreater99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions,in contrast,the SC mutant was defective in both. Therefore,the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence,this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.
View Publication
Hotchkiss RS et al. (MAY 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 9 5471--7
TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo.
Apoptosis is a key pathogenic mechanism in sepsis that induces extensive death of lymphocytes and dendritic cells,thereby contributing to the immunosuppression that characterizes the septic disorder. Numerous animal studies indicate that prevention of apoptosis in sepsis improves survival and may represent a potential therapy for this highly lethal disorder. Recently,novel cell-penetrating peptide constructs such as HIV-1 TAT basic domain and related peptides have been developed to deliver bioactive cargoes and peptides into cells. In the present study,we investigated the effects of sepsis-induced apoptosis in Bcl-x(L) transgenic mice and in wild-type mice treated with an antiapoptotic TAT-Bcl-x(L) fusion protein and TAT-BH4 peptide. Lymphocytes from Bcl-x(L) transgenic mice were resistant to sepsis-induced apoptosis,and these mice had a approximately 3-fold improvement in survival. TAT-Bcl-x(L) and TAT-BH4 prevented Escherichia coli-induced human lymphocyte apoptosis ex vivo and markedly decreased lymphocyte apoptosis in an in vivo mouse model of sepsis. In conclusion,TAT-conjugated antiapoptotic Bcl-2-like peptides may offer a novel therapy to prevent apoptosis in sepsis and improve survival.
View Publication
Nolz JC et al. (JUL 2007)
Journal of immunology (Baltimore,Md. : 1950) 179 2 1104--12
TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation.
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation,the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end,we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux,and blocked activation of two regulatory elements within the IL-2 promoter,NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly,we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact,NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation,and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall,these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and,thus,activation of the CD28RE/AP.
View Publication
Huijskens MJAJ et al. (DEC 2014)
Journal of leukocyte biology 96 6 1165--75
Technical advance: ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells.
The efficacy of donor HSCT is partly reduced as a result of slow post-transplantation immune recovery. In particular,T cell regeneration is generally delayed,resulting in high infection-related mortality in the first years post-transplantation. Adoptive transfer of in vitro-generated human T cell progenitors seems a promising approach to accelerate T cell recovery in immunocompromised patients. AA may enhance T cell proliferation and differentiation in a controlled,feeder-free environment containing Notch ligands and defined growth factors. Our experiments show a pivotal role for AA during human in vitro T cell development. The blocking of NOS diminished this effect,indicating a role for the citrulline/NO cycle. AA promotes the transition of proT1 to proT2 cells and of preT to DP T cells. Furthermore,the addition of AA to feeder cocultures resulted in development of DP and SP T cells,whereas without AA,a preT cell-stage arrest occurred. We conclude that neither DLL4-expressing feeder cells nor feeder cell conditioned media are required for generating DP T cells from CB and G-CSF-mobilized HSCs and that generation and proliferation of proT and DP T cells are greatly improved by AA. This technology could potentially be used to generate T cell progenitors for adoptive therapy.
View Publication
C.-W. J. Lio et al. (apr 2019)
Science immunology 4 34
TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer.
TET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Here,we report a close correspondence between 5hmC-marked regions,chromatin accessibility and enhancer activity in B cells,and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) transcription factors at TET-responsive genomic regions. Functionally,Tet2 and Tet3 regulate class switch recombination (CSR) in murine B cells by enhancing expression of Aicda,which encodes the activation-induced cytidine deaminase (AID) enzyme essential for CSR. TET enzymes deposit 5hmC,facilitate DNA demethylation,and maintain chromatin accessibility at two TET-responsive enhancer elements,TetE1 and TetE2,located within a superenhancer in the Aicda locus. Our data identify the bZIP transcription factor,ATF-like (BATF) as a key transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 in activated Batf-deficient B cells,indicating that BATF facilitates TET recruitment to this Aicda enhancer. Our study emphasizes the importance of TET enzymes for bolstering AID expression and highlights 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation.
View Publication
Jounaidi Y et al. (NOV 2017)
Cancer research 77 21 5938--5951
Tethering IL2 to Its Receptor IL2Rβ Enhances Antitumor Activity and Expansion of Natural Killer NK92 Cells.
IL2 is an immunostimulatory cytokine for key immune cells including T cells and natural killer (NK) cells. Systemic IL2 supplementation could enhance NK-mediated immunity in a variety of diseases ranging from neoplasms to viral infection. However,its systemic use is restricted by its serious side effects and limited efficacy due to activation of T regulatory cells (Tregs). IL2 signaling is mediated through interactions with a multi-subunit receptor complex containing IL2Rα,IL2Rβ,and IL2Rγ. Adult natural killer (NK) cells express only IL2Rβ and IL2Rγ subunits and are therefore relatively insensitive to IL2. To overcome these limitations,we created a novel chimeric IL2-IL2Rβ fusion protein of IL2 and its receptor IL2Rβ joined via a peptide linker (CIRB). NK92 cells expressing CIRB (NK92CIRB) were highly activated and expanded indefinitely without exogenous IL2. When compared with an IL2-secreting NK92 cell line,NK92CIRB were more activated,cytotoxic,and resistant to growth inhibition. Direct contact with cancer cells enhanced the cytotoxic character of NK92CIRB cells,which displayed superior in vivo antitumor effects in mice. Overall,our results showed how tethering IL2 to its receptor IL2Rβ eliminates the need for IL2Rα and IL2Rβ,offering a new tool to selectively activate and empower immune therapy. Cancer Res; 77(21); 5938-51. textcopyright2017 AACR.
View Publication
Crane CA et al. (JAN 2010)
Neuro-oncology 12 1 7--13
TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients.
The activating receptor NKG2D,expressed by natural killer (NK) cells and CD8(+) T cells,has a role in the specific killing of transformed cells. We examined NKG2D expression in patients with glioblastoma multiforme and found that NKG2D was downregulated on NK cells and CD8(+) T cells. Expression of NKG2D on lymphocytes significantly increased following tumor resection and correlated with an increased ability to kill NKG2D ligand-positive tumor targets. Despite the presence of soluble NKG2D ligands in the sera of glioblastoma patients,NKG2D downregulation was primarily caused by tumor-derived tumor growth factor-beta,suggesting that blocking of this cytokine may have therapeutic benefit.
View Publication