Shirai T et al. (MAR 2016)
The Journal of Experimental Medicine 213 3 337--54
The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease.
Abnormal glucose metabolism and enhanced oxidative stress accelerate cardiovascular disease,a chronic inflammatory condition causing high morbidity and mortality. Here,we report that in monocytes and macrophages of patients with atherosclerotic coronary artery disease (CAD),overutilization of glucose promotes excessive and prolonged production of the cytokines IL-6 and IL-1β,driving systemic and tissue inflammation. In patient-derived monocytes and macrophages,increased glucose uptake and glycolytic flux fuel the generation of mitochondrial reactive oxygen species,which in turn promote dimerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) and enable its nuclear translocation. Nuclear PKM2 functions as a protein kinase that phosphorylates the transcription factor STAT3,thus boosting IL-6 and IL-1β production. Reducing glycolysis,scavenging superoxide and enforcing PKM2 tetramerization correct the proinflammatory phenotype of CAD macrophages. In essence,PKM2 serves a previously unidentified role as a molecular integrator of metabolic dysfunction,oxidative stress and tissue inflammation and represents a novel therapeutic target in cardiovascular disease.
View Publication
Lapalombella R et al. (MAR 2009)
British journal of haematology 144 6 848--55
The humanized CD40 antibody SGN-40 demonstrates pre-clinical activity that is enhanced by lenalidomide in chronic lymphocytic leukaemia.
Antibody-based therapies,such as rituximab and alemtuzumab,have contributed significantly to the treatment of Chronic Lymphocytic leukaemia (CLL). The CD40 antigen is expressed predominantly on B-cells and represents a potential target for immune-based therapies. SGN-40 is a humanized IgG1 monoclonal antibody currently in Phase I/II clinical trials for indolent lymphomas,diffuse large B cell lymphomas and Multiple Myeloma. Its biological effect on CLL cells has not been studied. The present study demonstrated that SGN-40 mediated modest apoptosis in a subset of patients with secondary cross-linking but did not mediate complement-dependent cytotoxicity. SGN-40 also mediated antibody-dependent cellular cytotoxicity (ADCC) predominantly through natural killer (NK) cells. Previous studies by our group and others have demonstrated that lenalidomide upregulates CD40 expression on primary B CLL cells and activates NK-cells. We therefore examined for the combinatorial effect of lenalidomide and SGN-40 and demonstrated that both enhanced direct apoptosis and ADCC against primary CLL B cells. These data together provide justification for clinical trials of SGN-40 and lenalidomide in combination for CLL therapy.
View Publication
Crabé et al. (DEC 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 12 7692--702
The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling.
IL-27 is formed by the association of a cytokine subunit,p28,with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27R comprises gp130 and WSX-1. The marked difference between EBI3(-/-) and WSX-1(-/-) mice suggests that p28 has functions independent of EBI3. We have identified an alternative secreted complex formed by p28 and the soluble cytokine receptor cytokine-like factor 1 (CLF). Like IL-27,p28/CLF is produced by dendritic cells and is biologically active on human NK cells,increasing IL-12- and IL-2-induced IFN-gamma production and activation marker expression. Experiments with Ba/F3 transfectants indicate that p28/CLF activates cells expressing IL-6Ralpha in addition to the IL-27R subunits. When tested on CD4 and CD8 T cells,p28/CLF induces IL-6Ralpha-dependent STAT1 and STAT3 phosphorylation. Furthermore,p28/CLF inhibits CD4 T cell proliferation and induces IL-17 and IL-10 secretion. These results indicate that p28/CLF may participate in the regulation of NK and T cell functions by dendritic cells. The p28/CLF complex engages IL-6R and may therefore be useful for therapeutic applications targeting cells expressing this receptor. Blocking IL-6R using humanized mAbs such as tocilizumab has been shown to be beneficial in pathologies like rheumatoid arthritis and juvenile idiopathic arthritis. The identification of a new IL-6R ligand is therefore important for a complete understanding of the mechanism of action of this emerging class of immunosuppressors.
View Publication
Chiu B-C et al. (MAR 2004)
The American journal of pathology 164 3 1021--30
The innate pulmonary granuloma: characterization and demonstration of dendritic cell recruitment and function.
Granulomas are innate sequestration responses that can be modified by superimposed acquired immune mechanisms. The present study examined the innate stage of pulmonary granuloma responses to bead-immobilized Th1- and Th2-inducing pathogen antigens (Ags),Mycobacteria bovis purified protein derivative (PPD) and Schistosoma mansoni soluble egg Ags (SEA). Compared to a nonpathogen Ag,PPD and SEA bead elicited larger lesions with the former showing accelerated inflammation. Temporal analyses of cytokine and chemokine transcripts showed all Ag beads induced tumor necrosis factor-alpha mRNA but indicated biased interleukin (IL)-1,IL-6,and IL-12 expression with PPD challenge. All beads elicited comparable levels of CXCL9,CXL10,CCL2,CCL17,and CCL22 mRNA,but PPD beads caused biased CXCL2 CXCL5,CCL3,and CCL4 expression whereas both pathogen Ags induced CCL7. Immunohistochemical,electron microscopic,and flow cytometric analyses showed that Ag beads mobilized CD11c+ dendritic cells (DCs) of comparable maturation. Transfer of DCs from PPD Ag-challenged lungs conferred a Th1 anamnestic cytokine response in recipients. Surprisingly,transfer of DCs from the helminth SEA-challenged lungs did not confer the expected Th2 response,but instead rendered recipients incapable of Ag-elicited IL-4 production. These results provide in vivo evidence that lung DCs recruited under inflammatory conditions favor Th1 responses and alternative mechanisms are required for Th2 commitment.
View Publication
S. Omenetti et al. (jun 2019)
Immunity
The Intestine Harbors Functionally Distinct Homeostatic Tissue-Resident and Inflammatory Th17 Cells.
T helper 17 (Th17) cells are pathogenic in many inflammatory diseases,but also support the integrity of the intestinal barrier in a non-inflammatory manner. It is unclear what distinguishes inflammatory Th17 cells elicited by pathogens and tissue-resident homeostatic Th17 cells elicited by commensals. Here,we compared the characteristics of Th17 cells differentiating in response to commensal bacteria (SFB) to those differentiating in response to a pathogen (Citrobacter rodentium). Homeostatic Th17 cells exhibited little plasticity towards expression of inflammatory cytokines,were characterized by a metabolism typical of quiescent or memory T cells,and did not participate in inflammatory processes. In contrast,infection-induced Th17 cells showed extensive plasticity towards pro-inflammatory cytokines,disseminated widely into the periphery,and engaged aerobic glycolysis in addition to oxidative phosphorylation typical for inflammatory effector cells. These findings will help ensure that future therapies directed against inflammatory Th17 cells do not inadvertently damage the resident gut population.
View Publication
Hirst CE et al. (JAN 2003)
Journal of immunology (Baltimore,Md. : 1950) 170 2 805--15
The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency.
Granzyme B (grB) is a serine proteinase released by cytotoxic lymphocytes (CLs) to kill abnormal cells. GrB-mediated apoptotic pathways are conserved in nucleated cells; hence,CLs require mechanisms to protect against ectopic or misdirected grB. The nucleocytoplasmic serpin,proteinase inhibitor 9 (PI-9),is a potent inhibitor of grB that protects cells from grB-mediated apoptosis in model systems. Here we show that PI-9 is present in CD4(+) cells,CD8(+) T cells,NK cells,and at lower levels in B cells and myeloid cells. PI-9 is up-regulated in response to grB production and degranulation,and associates with grB-containing granules in activated CTLs and NK cells. Intracellular complexes of PI-9 and grB are evident in NK cells,and overexpression of PI-9 enhances CTL potency,suggesting that cytoplasmic grB,which may threaten CL viability,is rapidly inactivated by PI-9. Because dendritic cells (DCs) acquire characteristics similar to those of target cells to activate naive CD8(+) T cells and therefore may also require protection against grB,we investigated the expression of PI-9 in DCs. PI-9 is evident in thymic DCs (CD3(-),CD4(+),CD8(-),CD45(+)),tonsillar DCs,and DC subsets purified from peripheral blood (CD16(+) monocytes and CD123(+) plasmacytoid DCs). Furthermore,PI-9 is expressed in monocyte-derived DCs and is up-regulated upon TNF-alpha-induced maturation of monocyte-derived DCs. In conclusion,the presence and subcellular localization of PI-9 in leukocytes and DCs are consistent with a protective role against ectopic or misdirected grB during an immune response.
View Publication
Zizzari IG et al. ( 2015)
PLoS One 10 7 e0132617
The Macrophage Galactose-Type C-Type Lectin (MGL) Modulates Regulatory T Cell Functions
Regulatory T cells (Tregs) are physiologically designed to prevent autoimmune disease and maintain self-tolerance. In tumour microenvironments,their presence is related to a poor prognosis,and they influence the therapeutic outcome due to their capacity to suppress the immune response by cell-cell contact and to release immunosuppressive cytokines. In this study,we demonstrate that Treg immunosuppressive activity can be modulated by the cross-linking between the CD45RA expressed by Tregs and the C-type lectin MGL. This specific interaction strongly decreases the immunosuppressive activity of Tregs,restoring the proliferative capacity of co-cultured T lymphocytes. This effect can be attributed to changes in CD45RA and TCR signalling through the inhibition of Lck and inactivation of Zap-70,an increase in the Foxp3 methylation status and,ultimately,the reduced production of suppressive cytokines. These results indicate a role of MGL as an immunomodulator within the tumour microenvironment interfering with Treg functions,suggesting its possible use in the design of anticancer vaccines.
View Publication
Schü et al. (MAY 2008)
Blood 111 9 4532--41
The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate.
Mef2c is a MADS (MCM1-agamous-deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML,this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis,whereas BM isolated from Mef2c(Delta/-) mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun,but not PU.1,C/EBPalpha,or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover,retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation,coupled with its functional sensitivity to extracellular stimuli,demonstrate an important role in immunity--and,consistent with findings of other myeloid transcription factors,a target of oncogenic lesions in AML.
View Publication
Shreffler WG et al. (SEP 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 6 3677--85
The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro.
Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants. Peanut Ag (PNAg),but not deglycosylated PNAg,activated monocyte-derived dendritic cells (MDDCs) as measured by MHC/costimulatory molecule up-regulation,and by their ability to drive T cell proliferation. Furthermore,PNAg-activated MDDCs induced 2- to 3-fold more IL-4- and IL-13-secreting Th2 cells than immature or TNF/IL-1-activated MDDCs when cultured with naive CD4+ T cells. Human MDDCs rapidly internalized Ag in a calcium- and glycan-dependent manner consistent with recognition by C-type lectin. Dendritic cell (DC)-specific ICAM-grabbing nonintegrin (DC-SIGN) (CD209) was shown to recognize PNAg by enhanced uptake in transfected cell lines. To identify the DC-SIGN ligand from unfractionated PNAg,we expressed the extracellular portion of DC-SIGN as an Fc-fusion protein and used it to immunoprecipitate PNAg. A single glycoprotein was pulled down in a calcium-dependent manner,and its identity as Ara h 1 was proven by immunolabeling and mass spectrometry. Purified Ara h 1 was found to be sufficient for the induction of MDDCs that prime Th2-skewed T cell responses. Both PNAg and purified Ara h 1 induced Erk 1/2 phosphorylation of MDDCs,consistent with previous reports on the effect of Th2 adjuvants on DCs.
View Publication
Lucas DM et al. (MAY 2009)
Blood 113 19 4656--66
The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo.
Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes,leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen,the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells,established B-leukemia cell lines,and animal models. In CLL cells,silvestrol LC(50) (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration,there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood,silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage,as evidenced by reactive oxygen species generation and membrane depolarization. In vivo,silvestrol causes significant B-cell reduction in Emu-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.
View Publication
Pourcet B et al. (MAY 2016)
Scientific Reports 6 25481
The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms.
IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases,yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process,inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally,IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally,LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP,a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8,thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion,LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders.
View Publication
Armengol Lopez S et al. (JAN 2012)
International journal of vascular medicine 2012 942512
The oxidative state of chylomicron remnants influences their modulation of human monocyte activation.
Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro,by increasing reactive oxygen species (ROS) production and cell migration. In this study,the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states,normal (CRLPs),protected from oxidation by incorporation of the antioxidant,probucol (pCRLPs),or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs,whilst secretion on monocyte chemoattractant protein-1 was reduced,but oxCRLPs had no additional effect. In contrast,pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.
View Publication