miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53.
The role of miRNAs in regulating megakaryocyte differentiation was examined using bipotent K562 human leukemia cells. miR-34a is strongly up-regulated during phorbol ester-induced megakaryocyte differentiation,but not during hemin-induced erythrocyte differentiation. Enforced expression of miR-34a in K562 cells inhibits cell proliferation,induces cell-cycle arrest in G(1) phase,and promotes megakaryocyte differentiation as measured by CD41 induction. miR-34a expression is also up-regulated during thrombopoietin-induced differentiation of CD34(+) hematopoietic precursors,and its enforced expression in these cells significantly increases the number of megakaryocyte colonies. miR-34a directly regulates expression of MYB,facilitating megakaryocyte differentiation,and of CDK4 and CDK6,to inhibit the G(1)/S transition. However,these miR-34a target genes are down-regulated rapidly after inducing megakaryocyte differentiation before miR-34a is induced. This suggests that miR-34a is not responsible for the initial down-regulation but may contribute to maintaining their suppression later on. Previous studies have implicated miR-34a as a tumor suppressor gene whose transcription is activated by p53. However,in p53-null K562 cells,phorbol esters induce miR-34a expression independently of p53 by activating an alternative phorbol ester-responsive promoter to produce a longer pri-miR-34a transcript.
View Publication
Silber J et al. (JAN 2012)
PloS one 7 3 e33844
miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis.
Glioblastoma (GBM) and other malignant gliomas are aggressive primary neoplasms of the brain that exhibit notable refractivity to standard treatment regimens. Recent large-scale molecular profiling has revealed distinct disease subclasses within malignant gliomas whose defining genomic features highlight dysregulated molecular networks as potential targets for therapeutic development. The proneural" designation represents the largest and most heterogeneous of these subclasses�
View Publication
Pelicano H et al. (DEC 2006)
The Journal of cell biology 175 6 913--23
Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism.
Cancer cells exhibit increased glycolysis for ATP production due,in part,to respiration injury (the Warburg effect). Because ATP generation through glycolysis is less efficient than through mitochondrial respiration,how cancer cells with this metabolic disadvantage can survive the competition with other cells and eventually develop drug resistance is a long-standing paradox. We report that mitochondrial respiration defects lead to activation of the Akt survival pathway through a novel mechanism mediated by NADH. Respiration-deficient cells (rho(-)) harboring mitochondrial DNA deletion exhibit dependency on glycolysis,increased NADH,and activation of Akt,leading to drug resistance and survival advantage in hypoxia. Similarly,chemical inhibition of mitochondrial respiration and hypoxia also activates Akt. The increase in NADH caused by respiratory deficiency inactivates PTEN through a redox modification mechanism,leading to Akt activation. These findings provide a novel mechanistic insight into the Warburg effect and explain how metabolic alteration in cancer cells may gain a survival advantage and withstand therapeutic agents.
View Publication
Cai S et al. (APR 2005)
Cancer research 65 8 3319--27
Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents.
DNA repair capacity of eukaryotic cells has been studied extensively in recent years. Mammalian cells have been engineered to overexpress recombinant nuclear DNA repair proteins from ectopic genes to assess the impact of increased DNA repair capacity on genome stability. This approach has been used in this study to specifically target O(6)-methylguanine DNA methyltransferase (MGMT) to the mitochondria and examine its impact on cell survival after exposure to DNA alkylating agents. Survival of human hematopoietic cell lines and primary hematopoietic CD34(+) committed progenitor cells was monitored because the baseline repair capacity for alkylation-induced DNA damage is typically low due to insufficient expression of MGMT. Increased DNA repair capacity was observed when K562 cells were transfected with nuclear-targeted MGMT (nucl-MGMT) or mitochondrial-targeted MGMT (mito-MGMT). Furthermore,overexpression of mito-MGMT provided greater resistance to cell killing by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) than overexpression of nucl-MGMT. Simultaneous overexpression of mito-MGMT and nucl-MGMT did not enhance the resistance provided by mito-MGMT alone. Overexpression of either mito-MGMT or nucl-MGMT also conferred a similar level of resistance to methyl methanesulfonate (MMS) and temozolomide (TMZ) but simultaneous overexpression in both cellular compartments was neither additive nor synergistic. When human CD34(+) cells were infected with oncoretroviral vectors that targeted O(6)-benzylguanine (6BG)-resistant MGMT (MGMT(P140K)) to the nucleus or the mitochondria,committed progenitors derived from infected cells were resistant to 6BG/BCNU or 6BG/TMZ. These studies indicate that mitochondrial or nuclear targeting of MGMT protects hematopoietic cells against cell killing by BCNU,TMZ,and MMS,which is consistent with the possibility that mitochondrial DNA damage and nuclear DNA damage contribute equally to alkylating agent-induced cell killing during chemotherapy.
View Publication
Dorrance AM et al. (OCT 2006)
The Journal of clinical investigation 116 10 2707--16
Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations.
We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1,HRX,and HTRX1),consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene,occurring in approximately 4%-7% of patients with acute myeloid leukemia (AML) and normal cytogenetics,and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this,we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. Mll(PTD/WT) mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis,resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. Mll(PTD/WT) mice overexpress Hoxa7,Hoxa9,and Hoxa10 in spleen,BM,and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML.
View Publication
Heuser M et al. (SEP 2007)
Blood 110 5 1639--47
MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML.
Overexpression of wild-type MN1 is a negative prognostic factor in patients with acute myeloid leukemia (AML) with normal cytogenetics. We evaluated whether MN1 plays a functional role in leukemogenesis. We demonstrate using retroviral gene transfer and bone marrow (BM) transplantation that MN1 overexpression rapidly induces lethal AML in mice. Insertional mutagenesis and chromosomal instability were ruled out as secondary aberrations. MN1 increased resistance to all-trans retinoic acid (ATRA)-induced cell-cycle arrest and differentiation by more than 3000-fold in vitro. The differentiation block could be released by fusion of a transcriptional activator (VP16) to MN1 without affecting the ability to immortalize BM cells,suggesting that MN1 blocks differentiation by transcriptional repression. We then evaluated whether MN1 expression levels in patients with AML (excluding M3-AML) correlated with resistance to ATRA treatment in elderly patients uniformly treated within treatment protocol AMLHD98-B. Strikingly,patients with low MN1 expression who received ATRA had a significantly prolonged event-free (P = .008) and overall (P = .04) survival compared with patients with either low MN1 expression and no ATRA,or high MN1 expression with or without ATRA. MN1 is a unique oncogene in hematopoiesis that both promotes proliferation/self-renewal and blocks differentiation,and may become useful as a predictive marker in AML treatment.
View Publication
Agerstam H et al. (SEP 2010)
Blood 116 12 2103--11
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
The 8p11 myeloproliferative syndrome (EMS),also referred to as stem cell leukemia/lymphoma,is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly,EMS is characterized by fusion of various partner genes to the FGFR1 gene,resulting in constitutive activation of the tyrosine kinases in FGFR1. To date,no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context,that of normal primary human hematopoietic cells. Herein,we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilical-cord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice,expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS,including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover,bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes,by themselves,are capable of initiating an EMS-like disorder,and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder.
View Publication
McCracken KW et al. (DEC 2014)
Nature 516 7531 400--4
Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.
Gastric diseases,including peptic ulcer disease and gastric cancer,affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis,and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF,WNT,BMP,retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains,proliferative zones containing LGR5-expressing cells,surface and antral mucous cells,and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease,we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor,activation of signalling and induction of epithelial proliferation. Together,these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.
View Publication
Law JH et al. (JAN 2010)
PloS one 5 9
Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability.
The Y-box binding protein-1 (YB-1) is an oncogenic transcription/translation factor that is activated by phosphorylation at S102 whereby it induces the expression of growth promoting genes such as EGFR and HER-2. We recently illustrated by an in vitro kinase assay that a novel peptide to YB-1 was highly phosphorylated by the serine/threonine p90 S6 kinases RSK-1 and RSK-2,and to a lesser degree PKCα and AKT. Herein,we sought to develop this decoy cell permeable peptide (CPP) as a cancer therapeutic. This 9-mer was designed as an interference peptide that would prevent endogenous YB-1(S102) phosphorylation based on molecular docking. In cancer cells,the CPP blocked P-YB-1(S102) and down-regulated both HER-2 and EGFR transcript level and protein expression. Further,the CPP prevented YB-1 from binding to the EGFR promoter in a gel shift assay. Notably,the growth of breast (SUM149,MDA-MB-453,AU565) and prostate (PC3,LNCap) cancer cells was inhibited by ∼90% with the CPP. Further,treatment with this peptide enhanced sensitivity and overcame resistance to trastuzumab in cells expressing amplified HER-2. By contrast,the CPP had no inhibitory effect on the growth of normal immortalized breast epithelial (184htert) cells,primary breast epithelial cells,nor did it inhibit differentiation of hematopoietic progenitors. These data collectively suggest that the CPP is a novel approach to suppressing the growth of cancer cells while sparing normal cells and thereby establishes a proof-of-concept that blocking YB-1 activation is a new course of cancer therapeutics.
View Publication
Hideshima T et al. (FEB 2003)
Blood 101 4 1530--4
Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.
We have recently shown that proteasome inhibitor PS-341 induces apoptosis in drug-resistant multiple myeloma (MM) cells,inhibits binding of MM cells in the bone marrow microenvironment,and inhibits cytokines mediating MM cell growth,survival,drug resistance,and migration in vitro. PS-341 also inhibits human MM cell growth and prolongs survival in a SCID mouse model. Importantly,PS-341 has achieved remarkable clinical responses in patients with refractory relapsed MM. We here demonstrate molecular mechanisms whereby PS-341 mediates anti-MM activity by inducing p53 and MDM2 protein expression; inducing the phosphorylation (Ser15) of p53 protein; activating c-Jun NH(2)-terminal kinase (JNK),caspase-8,and caspase-3; and cleaving the DNA protein kinase catalytic subunit,ATM,and MDM2. Inhibition of JNK activity abrogates PS-341-induced MM cell death. These studies identify molecular targets of PS-341 and provide the rationale for the development of second-generation,more targeted therapies.
View Publication
Ketola K et al. (DEC 2010)
Molecular cancer therapeutics 9 12 3175--85
Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells.
Current treatment options for advanced and hormone refractory prostate cancer are limited and responses to commonly used androgen pathway inhibitors are often unsatisfactory. Our recent results indicated that sodium ionophore monensin is one of the most potent and cancer-specific inhibitors in a systematic sensitivity testing of most known drugs and drug-like molecules in a panel of prostate cancer cell models. Because monensin has been extensively used in veterinary applications to build muscle mass in cattle,the link to prostate cancer and androgen signaling was particularly interesting. Here,we showed that monensin effects at nanomolar concentrations are linked to induction of apoptosis and potent reduction of androgen receptor mRNA and protein in prostate cancer cells. Monensin also elevated intracellular oxidative stress in prostate cancer cells as evidenced by increased generation of intracellular reactive oxygen species and by induction of a transcriptional profile characteristic of an oxidative stress response. Importantly,the antiproliferative effects of monensin were potentiated by combinatorial treatment with the antiandrogens and antagonized by antioxidant vitamin C. Taken together,our results suggest monensin as a potential well-tolerated,in vivo compatible drug with strong proapoptotic effects in prostate cancer cells,and synergistic effects with antiandrogens. Moreover,our data suggest a general strategy by which the effects of antiandrogens could be enhanced by combinatorial administration with agents that increase oxidative stress in prostate cancer cells.
View Publication
Fusi A et al. (AUG 2010)
Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 21 8 1734--5
Monitoring of circulating tumor cells in a patient with synchronous metastatic melanoma and colon carcinoma.