Puissant A et al. (FEB 2010)
Cancer research 70 3 1042--52
Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation.
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress,cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62),but its role in the regulation of autophagy is controversial. Here,we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK,thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly,p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV,and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.
View Publication
Guidoboni M et al. (JAN 2005)
Cancer research 65 2 587--95
Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma.
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma with poor response to therapy and unfavorable prognosis. Here,we show that retinoic acid (RA) isomers significantly inhibit the proliferation of both primary MCL cultures (n = 7) and established cell lines (Granta 519 and SP-53) as shown by [(3)H]thymidine uptake and carboxyfluorescein diacetate succinimidyl ester labeling coupled with cyclin D1 staining. RA induces cell accumulation in G(0)-G(1) together with a marked up-regulation of p27(Kip1) by inhibiting ubiquitination and proteasome-dependent degradation of the protein. The p21(Cip1) inhibitor was also up-regulated by RA in Granta 519 cells,whereas the expression of cyclin D1 is unaffected. Most of RA-induced p27(Kip1) was bound to cyclin D1/cyclin-dependent kinase 4 complexes,probably contributing to the decreased cyclin-dependent kinase 4 kinase activity and pRb hypophosphorylation observed in RA-treated cells. Experiments with receptor-selective ligands indicate that RA receptor alpha cooperates with retinoid X receptors in mediating RA-dependent MCL cell growth inhibition. Notably,RA isomers,and particularly 9-cis-RA,also inhibited the growth-promoting effect induced in primary MCL cells by CD40 activation alone or in combination with interleukin-4. Immunohistochemical analysis showed that significant numbers of CD40L-expressing lymphoid cells are present in lymph node biopsies of MCL patients. These results therefore further strengthen the possibility that triggering of CD40 by infiltrating CD40L+ cells may continuously promote the growth of MCL cells in vivo. On these grounds,our findings that RA inhibits basal MCL proliferation as well as MCL growth-promoting effects exerted by microenvironmental factors make these compounds highly attractive in terms of potential clinical efficacy in this setting.
View Publication
Ginestier C et al. (OCT 2009)
Cell cycle (Georgetown,Tex.) 8 20 3297--302
Retinoid signaling regulates breast cancer stem cell differentiation.
The cancer stem cell (CSC) hypothesis implicates the development of new therapeutic approaches to target the CSC population. Characterization of the pathways that regulate CSCs activity will facilitate the development of targeted therapies. We recently reported that the enzymatic activity of ALDH1,as measured by the ALDELFUOR assay,can be utilized to isolate normal and malignant breast stem cells in both primary tumors and cell lines. In this study,utilizing a tumorsphere assay,we have demonstrated the role of retinoid signaling in the regulation of breast CSCs self-renewal and differentiation. Utilizing the gene set enrichment analysis (GSEA) algorithm we identified gene sets and pathways associated with retinoid signaling. These pathways regulate breast CSCs biology and their inhibition may provide novel therapeutic approaches to target breast CSCs.
View Publication
Pomponi F et al. (OCT 1996)
Blood 88 8 3147--59
Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes.
Natural and synthetic retinoids have proved to be effective in the treatment and prevention of various human cancers. In the present study,we investigated the effect of retinoids on Epstein-Barr virus (EBV)-infected lymphoblastoid cell lines (LCLs),since these cells closely resemble those that give rise to EBV-related lymphoproliferative disorders in the immunosuppressed host. All six compounds tested inhibited LCL proliferation with no significant direct cytotoxicity,but 9-cis-retinoic acid (RA),13-cis-RA,and all-trans-RA (ATRA) were markedly more efficacious than Ro40-8757,Ro13-6298,and etretinate. The antiproliferative action of the three most effective compounds was confirmed in a large panel of LCLs,thus appearing as a generalized phenomenon in these cells. LCL growth was irreversibly inhibited even after 2 days of treatment at drug concentrations corresponding to therapeutically achievable plasma levels. Retinoid-treated cells showed a marked downregulation of CD71 and a decreased S-phase compartment with a parallel accumulation in Gzero/ G1 phases. These cell cycle perturbations were associated with the upregulation of p27 Kip1,a nuclear protein that controls entrance and progression through the cell cycle by inhibiting several cyclin/cyclin-dependent kinase complexes. Unlike what is observed in other systems,the antiproliferative effect exerted by retinoids on LCLs was not due to the acquisition of a terminally differentiated status. In fact,retinoid-induced modifications of cell morphology,phenotype (downregulation of CD19,HLA-DR,and s-Ig,and increased expression of CD38 and c-Ig),and IgM production were late events,highly heterogeneous,and often slightly relevant,being therefore only partially indicative of a drug-related differentiative process. Moreover,EBV-encoded EBV nuclear antigen-2 and latent membrane protein-1 proteins were inconstantly downregulated by retinoids,indicating that their growth-inhibitory effect is not mediated by a direct modulation of viral latent antigen expression. The strong antiproliferative activity exerted by retinoids in our experimental model indicates that these compounds may represent a useful tool in the medical management of EBV-related lymphoproliferative disorders of immunosuppressed patients.
View Publication
Miething C et al. (MAR 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 11 4594--9
Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment.
The kinase inhibitor imatinib mesylate targeting the oncoprotein Bcr-Abl has revolutionized the treatment of chronic myeloid leukemia (CML). However,even though imatinib successfully controls the leukemia in chronic phase,it seems not to be able to cure the disease,potentially necessitating lifelong treatment with the inhibitor under constant risk of relapse. On a molecular level,the cause of disease persistence is not well understood. Initial studies implied that innate features of primitive progenitor cancer stem cells may be responsible for the phenomenon. Here,we describe an assay using retroviral insertional mutagenesis (RIM) to identify genes contributing to disease persistence in vivo. We transplanted mice with bone marrow cells retrovirally infected with the Bcr-Abl oncogene and subsequently treated the animals with imatinib to select for leukemic cells in which the proviral integration had affected genes modulating the imatinib response. Southern blot analysis demonstrated clonal outgrowth of cells carrying similar integration sites. Candidate genes located near the proviral insertion sites were identified,among them the transcription factor RUNX3. Proviral integration near the RUNX3 promoter induced RUNX3 expression,and Bcr-Abl-positive cell lines with stable or inducible expression of RUNX1 or RUNX3 were protected from imatinib-induced apoptosis. Furthermore,imatinib treatment selected for RUNX1-expressing cells in vitro and in vivo after infection of primary bone marrow cells with Bcr-Abl and RUNX1. Our results demonstrate the utility of RIM for probing molecular modulators of targeted therapies and suggest a role for members of the RUNX transcription factor family in disease persistence in CML patients.
View Publication
Bosch A et al. ( 2012)
Breast Cancer Research 14 4 R121
Reversal by RARα agonist Am580 of c-Myc-induced imbalance in RARα/RARγ expression during MMTV-Myc tumorigenesis
INTRODUCTION: Retinoic acid signaling plays key roles in embryonic development and in maintaining the differentiated status of adult tissues. Recently,the nuclear retinoic acid receptor (RAR) isotypes α,β and γ were found to play specific functions in the expansion and differentiation of the stem compartments of various tissues. For instance,RARγ appears to be involved in stem cell compartment expansion,while RARα and RARβ are implicated in the subsequent cell differentiation. We found that over-expressing c-Myc in normal mouse mammary epithelium and in a c-Myc-driven transgenic model of mammary cancer,disrupts the balance between RARγ and RARα/β in favor of RARγ. METHODS: The effects of c-Myc on RAR isotype expression were evaluated in normal mouse mammary epithelium,mammary tumor cells obtained from the MMTV-Myc transgenic mouse model as well as human normal immortalized breast epithelial and breast cancer cell lines. The in vivo effect of the RARα-selective agonist 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthyl)carboxamido]benzoic acid (Am580) was examined in the MMTV-Myc mouse model of mammary tumorigenesis. RESULTS: Modulation of the RARα/β to RARγ expression in mammary glands of normal mice,oncomice,and human mammary cell lines through the alteration of RAR-target gene expression affected cell proliferation,survival and tumor growth. Treatment of MMTV-Myc mice with the RARα-selective agonist Am580 led to significant inhibition of mammary tumor growth (˜90%,Ptextless0.001),lung metastasis (Ptextless0.01) and extended tumor latency in 63% of mice. Immunocytochemical analysis showed that in these mice,RARα responsive genes such as Cyp26A1,E-cadherin,cellular retinol-binding protein 1 (CRBP1) and p27,were up-regulated. In contrast,the mammary gland tumors of mice that responded poorly to Am580 treatment (37%) expressed significantly higher levels of RARγ. In vitro experiments indicated that the rise in RARγ was functionally linked to promotion of tumor growth and inhibition of differentiation. Thus,activation of the RARα pathway is linked to tumor growth inhibition,differentiation and cell death. CONCLUSIONS: The functional consequence of the interplay between c-Myc oncogene expression and the RARγ to RARα/β balance suggests that prevalence of RARγ over-RARα/β expression levels in breast cancer accompanied by c-Myc amplification or over-expression in breast cancer should be predictive of response to treatment with RARα-isotype-specific agonists and warrant monitoring during clinical trials.
View Publication
D'Alise AM et al. (MAY 2008)
Molecular cancer therapeutics 7 5 1140--9
Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells.
The demonstration that the small synthetic molecule reversine [2-(4-morpholinoanilino)-N6-cyclohexyladenine] promotes the dedifferentiation of committed cells into multipotent progenitor-type cells has raised hopes on the exploitation of this small chemical tool for the generation of stem cells. Here,we show that reversine causes a failure in cytokinesis and induces polyploidization. These effects of reversine are due to the inhibition of Aurora A and B,two related kinases that are implicated in several aspects of mitosis and that are frequently amplified and overexpressed in human tumors. Reversine inhibits the phosphorylation of histone H3,a direct downstream target of Aurora kinases. Similarly to the Aurora kinase inhibitor VX-680,which has recently entered phase II clinical trials for cancer treatment,reversine inhibited colony formation of leukemic cells from patients with acute myeloid leukemia but was significantly less toxic than VX-680 on cells from healthy donors. The crystal structure of the reversine-Aurora B kinase complex shows that reversine is a novel class of ATP-competitive Aurora kinase inhibitors. Thus,although our studies raise serious doubts on the application of reversine in regenerative medicine,they support the paradigm that reversine might be a useful agent in cancer chemotherapy.
View Publication
Huan J et al. (JAN 2013)
Cancer research 73 2 918--29
RNA trafficking by acute myelogenous leukemia exosomes.
Extrinsic signaling cues in the microenvironment of acute myelogenous leukemia (AML) contribute to disease progression and therapy resistance. Yet,it remains unknown how the bone marrow niche in which AML arises is subverted to support leukemic persistence at the expense of homeostatic function. Exosomes are cell membrane-derived vesicles carrying protein and RNA cargoes that have emerged as mediators of cell-cell communication. In this study,we examined the role of exosomes in developing the AML niche of the bone marrow microenvironment,investigating their biogenesis with a focus on RNA trafficking. We found that both primary AML and AML cell lines released exosome-sized vesicles that entered bystander cells. These exosomes were enriched for several coding and noncoding RNAs relevant to AML pathogenesis. Furthermore,their uptake by bone marrow stromal cells altered their secretion of growth factors. Proof-of-concept studies provided additional evidence for the canonical functions of the transferred RNA. Taken together,our findings revealed that AML exosome trafficking alters the proliferative,angiogenic,and migratory responses of cocultured stromal and hematopoietic progenitor cell lines,helping explain how the microenvironmental niche becomes reprogrammed during invasion of the bone marrow by AML.
View Publication
Megakaryoblastic leukemia 1 (MKL1),identified as part of the t(1;22) translocation specific to acute megakaryoblastic leukemia,is highly expressed in differentiated muscle cells and promotes muscle differentiation by activating serum response factor (SRF). Here we show that Mkl1 expression is up-regulated during murine megakaryocytic differentiation and that enforced overexpression of MKL1 enhances megakaryocytic differentiation. When the human erythroleukemia (HEL) cell line is induced to differentiate with 12-O-tetradecanoylphorbol 13-acetate,overexpression of MKL1 results in an increased number of megakaryocytes with a concurrent increase in ploidy. MKL1 overexpression also promotes megakaryocytic differentiation of primary human CD34(+) cells cultured in the presence of thrombopoietin. The effect of MKL1 is abrogated when SRF is knocked down,suggesting that MKL1 acts through SRF. Consistent with these findings in human cells,knockout of Mkl1 in mice leads to reduced platelet counts in peripheral blood,and reduced ploidy in bone marrow megakaryocytes. In conclusion,MKL1 promotes physiologic maturation of human and murine megakaryocytes.
View Publication
Ló et al. (NOV 2009)
Cancer immunology,immunotherapy : CII 58 11 1853--64
Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells.
Immunotherapy with the EGFR-specific mAb cetuximab is clinically effective in 10-20% of patients with squamous cell carcinoma of the head and neck (SCCHN). Little information is available about the mechanism(s) underlying patients' differential clinical response to cetuximab-based immunotherapy,although this information may contribute to optimizing the design of cetuximab-based immunotherapy. Our understanding of these mechanisms would benefit from the characterization of the variables which influence the extent of cell dependent-lysis of SCCHN cells incubated with cetuximab in vitro. Therefore,in this study we have investigated the role of FcgammaR IIIa-158 genotype expressed by effector NK cells,cetuximab concentration,and EGFR expression level by SCCHN cells in the extent of their in vitro lysis and in the degree of NK cell activation. PBMC or purified CD56+ NK cells genotyped at IIIa codon 158 and SCCHN cell lines expressing different levels of EGFR have been used as effectors and targets,respectively,in antibody dependent cellular cytotoxicity (ADCC) assays. Furthermore,supernatants from ADCC assays were analyzed for cytokine and chemokine levels using multiplexed ELISA. We found that the extent of lysis of SCCHN cells was influenced by the EGFR expression level,cetuximab concentration,and FcgammaR polymorphism. Effector cells expressing the FcgammaR IIIa-158 VV allele were significantly (P textless 0.0001) more effective than those expressing FcgammaR IIIa VF and FF [corrected] alleles in mediating lysis of SCCHN cells expressed higher levels of the activation markers CD69 and CD107a,and secreted significantly (P textless 0.05) larger amounts of inflammatory cytokines and chemokines. IL-2 or IL-15 treatment increased cetuximab-mediated ADCC by poor binding FcgammaR IIIa 158 FF expressing NK cells. The importance of the FcgammaR IIIa-158 polymorphism in cytotoxicity of SCCHN cells by NK cells supports a potential role for immune activation and may explain patient variability of cetuximab mediated clinical responses. Cellular and secreted immune profiles and FcgammaR genotypes from patients' lymphocytes may provide clinically useful biomarkers of immune activation in cetuximab treated patients.
View Publication
Alberta JA et al. (APR 2003)
Blood 101 7 2570--4
Role of the WT1 tumor suppressor in murine hematopoiesis.
The WT1 tumor-suppressor gene is expressed by many forms of acute myeloid leukemia. Inhibition of this expression can lead to the differentiation and reduced growth of leukemia cells and cell lines,suggesting that WT1 participates in regulating the proliferation of leukemic cells. However,the role of WT1 in normal hematopoiesis is not well understood. To investigate this question,we have used murine cells in which the WT1 gene has been inactivated by homologous recombination. We have found that cells lacking WT1 show deficits in hematopoietic stem cell function. Embryonic stem cells lacking WT1,although contributing efficiently to other organ systems,make only a minimal contribution to the hematopoietic system in chimeras,indicating that hematopoietic stem cells lacking WT1 compete poorly with healthy stem cells. In addition,fetal liver cells lacking WT1 have an approximately 75% reduction in erythroid blast-forming unit (BFU-E),erythroid colony-forming unit (CFU-E),and colony-forming unit-granulocyte macrophage-erythroid-megakaryocyte (CFU-GEMM). However,transplantation of fetal liver hematopoietic cells lacking WT1 will repopulate the hematopoietic system of an irradiated adult recipient in the absence of competition. We conclude that the absence of WT1 in hematopoietic cells leads to functional defects in growth potential that may be of consequence to leukemic cells that have alterations in the expression of WT1.
View Publication